Перевод: с русского на все языки

со всех языков на русский

температура подачи

  • 1 температура подачи

    Универсальный русско-английский словарь > температура подачи

  • 2 температура подачи

    température d’alimentation

    Русско-французский политехнический словарь > температура подачи

  • 3 температура подачи

    Dictionnaire russe-français universel > температура подачи

  • 4 температура подачи топлива

    Универсальный русско-английский словарь > температура подачи топлива

  • 5 температура горения

    Русско-английский научный словарь > температура горения

  • 6 температура расхода на стороне подачи

    Универсальный русско-немецкий словарь > температура расхода на стороне подачи

  • 7 трубопровод для подачи дутья

    Русско-английский новый политехнический словарь > трубопровод для подачи дутья

  • 8 активная охлаждающая балка

    1. active chilled beam

     

    активная охлаждающая балка
    -

    [Интент]

    4806
     

    На рисунке показана активная охлаждающая балка. Охлажденный и осушенный первичный воздух (1) подается по воздуховодам от центральной приточной установки в распределительную камеру внутри балки, из которой он инжектируется (2) через набор сопел. Струи первичного воздуха увлекают за собой внутренний воздух (3) через встроенный теплообменный змеевик балки, где он рекондиционируется (4), затем смешивается с первичным воздухом, и эта смесь подается в помещение (5). Объем эжектируемого воздуха обычно в 2–5 раз превышает объем первичного воздуха, в зависимости от размера и типа используемых всасывающих сопел, поэтому интенсивность потока подаваемого в помещение воздуха в 3–6 раз превышает интенсивность потока первичного воздуха. Отношение потока эжектируемого воздуха к потоку первичного (поданного по воздуховодам) воздуха называется коэффициентом эжекции балки (КЭ).

    Охлаждающая нагрузка по явной теплоте внутри балки обеспечивается охлажденной водой, температура подачи которой равна или превышает точку росы в помещении для предотвращения конденсации. Явная теплота, отбираемая змеевиком, обычно составляет 50–75 % требуемого отвода явной теплоты в помещении. В результате можно уменьшить расход первичного воздуха на охлаждение помещения.

    Хотя расход первичного (в воздуховоде) воздуха при использовании охлаждающих балок значительно ниже, чем в полностью воздушных системах, расход эжектируемого воздуха всегда оказывается выше. Поскольку температура воды, поступающей в змеевик балки, поддерживается выше точки росы помещения, температура воздуха балки на выходе змеевика будет выше, чем температура первичного воздуха, используемого в полностью воздушных системах. Окончательная температура выходящей из балки смеси обычно на 2–3,3 °С выше, чем в полностью воздушных системах. Таким образом, расход воздуха, подаваемого в помещение, должен быть пропорционально выше (20–30 %). Этот повышенный расход часто увеличивает вероятность возникновения сквозняков, что может отрицательно сказаться на уровне теплового комфорта пользователей.
    [ http://www.abok.ru/for_spec/articles.php?nid=4530]

    Тематики

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > активная охлаждающая балка

  • 9 нормальная работа

    1. normal operation

     

    нормальная работа
    Условия, при которых прибор работает в соответствии с нормальной эксплуатацией, когда прибор подсоединен к сети питания.
    [ ГОСТ Р 52161. 1-2004 ( МЭК 60335-1: 2001)]

    EN

    normal operation
    conditions under which the appliance is operated in normal use when it is connected to the supply mains
    [IEC 60335-1, ed. 4.0 (2001-05)]

    FR

    conditions de fonctionnement normal
    conditions dans lesquelles l'appareil est mis en fonctionnement en usage normal lorsqu’il est raccordé au réseau d'alimentation
    [IEC 60335-1, ed. 4.0 (2001-05)]

    Тематики

    EN

    FR

    нормальная работа (normal operation): Работа прибора, как установлено в следующих абзацах.

    Примечание - Приборы, не упомянутые ниже, но которые тем не менее могут выполнять одну из функций приготовления пищи, работают, как определено для этой функции, насколько это возможно.

    Источник: ГОСТ Р 52161.2.9-2006: Безопасность бытовых и аналогичных электрических приборов. Часть 2.9. Частные требования для грилей, тостеров и аналогичных переносных приборов для приготовления пищи оригинал документа

    нормальная работа (normal operation): Работа прибора при следующих условиях.

    Прибор работаете максимальным количеством воды, для которого он сконструирован, без использования детергентов или ополаскивающих средств, без посуды или столовых приборов. Если очевидно, что при загрузке прибора результаты испытаний будут иными, испытания проводят при загрузке максимальным количеством посуды и столовых приборов, установленным в инструкциях.

    Примечание 101 - Посуда и столовые приборы, используемые при испытании, - по ГОСТ 30147.

    Воду подают под любым давлением в пределах, установленных в инструкциях, температура воды на входе должна быть:

    плюс (60 ± 5) °С или равной установленной в инструкциях (если она выше указанной) - для входных отверстий, предназначенных для подачи только горячей воды;

    плюс (15 ± 5) °С - для входных отверстий, предназначенных для подачи только холодной воды.

    Если прибор имеет ввод, предназначенный для подачи как холодной, так и горячей воды, температура при испытаниях должна быть наиболее неблагоприятной.

    Источник: ГОСТ Р 52161.2.5-2005: Безопасность бытовых и аналогичных электрических приборов. Часть 2.5. Частные требования для посудомоечных машин оригинал документа

    нормальная работа (normal operation): Работа прибора при следующих условиях.

    Прибор работает при номинальном напряжении непрерывно с входным отверстием для воздуха, отрегулированным на потребляемую мощность Рт, измеренную после 20 с работы. При необходимости через 3 мин проводят окончательное регулирование отверстия.

    Потребляемую мощность Ртрассчитывают по формуле

    Pm = 0,5×(Pf + Pi),

    где Pf - мощность, потребляемая прибором, работающим в течение 3 мин с открытым входным отверстием для воздуха, в ваттах. Любое устройство, используемое для обеспечения циркуляции охлаждающего двигатель воздуха в случае блокирования главного входного отверстия, может работать обычным образом;

    Pi - мощность, потребляемая прибором, работающим в течение следующих 20 с с полностью закрытым входным отверстием, в ваттах. Любое устройство, регулируемое без помощи инструмента и используемое для обеспечения циркуляции охлаждающего двигатель воздуха в случае блокирования главного входного отверстия, должно быть отключено.

    Если прибор имеет маркировку диапазона номинальных напряжений, то его включают на напряжение, равное среднему значению диапазона напряжений при условии, что разность между предельными значениями диапазона не превышает 10 % среднего значения. Если эта разность превышает 10 %, прибор включают на напряжение, равное верхнему пределу диапазона.

    Измерения проводят на приборе, имеющем чистый пылесборник и фильтр, при этом емкость для воды не должна быть заполнена. Если прибор предназначен для использования только со шлангом, съемные насадки и трубки удаляют, а шланг выпрямляют. Если шланг прибора является необязательным элементом, прибор работает без шланга.

    Вращающиеся щетки и аналогичные устройства при работе не должны контактировать с какой-либо поверхностью. Чистящие головки, подсоединенные с помощью шланга, при работе не должны контактировать с какой-либо поверхностью.

    Выходные отверстия прибора для присоединения необязательных элементов нагружают нагрузкой сопротивления, указанной в маркировке прибора.

    Источник: ГОСТ Р 52161.2.2-2005: Безопасность бытовых и аналогичных электрических приборов. Часть 2.2. Частные требования для пылесосов и водовсасывающих чистящих приборов оригинал документа

    нормальная работа (normal operation): Работа прибора при следующих условиях.

    Машины для обработки полов работают непрерывно, совершая возвратно-поступательные движения со скоростью 15 циклов в минуту на полированной стальной плите на расстояние 1 м. Прибор оснащен щетками для пола с твердой поверхностью в соответствии с инструкциями.

    Примечание 101 - Нагрев стальной плиты не допускается. Можно использовать принудительное охлаждение, но при этом необходимо гарантировать, что циркуляция воздуха не влияет на превышение температуры, значение которого определяют.

    Машины для щелочной обработки полов работают на необработанных гладких сосновых досках толщиной 25 мм, шириной приблизительно 100 мм, закрепленных внутри на дне металлического поддона. Машина для щелочной обработки совершает возвратно-поступательные движения со скоростью 15 циклов в минуту на расстояние 1 м.

    Машины для чистки ковров шампунем работают на ковре, закрепленном внутри на дне металлического поддона, который наполнен водой до уровня приблизительно 3 мм над поверхностью ковра. Ковер изготовлен из нейлоновых волокон высотой ворса приблизительно 6 мм. Машина для чистки шампунем совершает возвратно-поступательные движения со скоростью 10 циклов в минуту на расстояние 1 м.

    Если машина для щелочной обработки полов или машина для чистки ковров шампунем снабжена системой распределения жидкости, поддон не заполняют водой, но систему распределения жидкости приводят в действие.

    Машины для чистки драпировки шампунем работают без вращающихся щеток или аналогичных устройств, контактирующих с драпировкой или любой другой поверхностью. Всасывающие шланги располагают свободно вне прямой линии с входным отверстием. Система распределения жидкости работает с пустым резервуаром.

    Источник: ГОСТ Р 52161.2.10-2005: Безопасность бытовых и аналогичных электрических приборов. Часть 2.10. Частные требования для машин для обработки полов и машин для влажной чистки оригинал документа

    нормальная работа (normal operation): Работа прибора при следующих условиях.

    Прибор, работающий с неглубокой кастрюлей диаметром 150 мм, которая наполнена водой на высоту не менее 25 мм, устанавливают на горячую поверхность. Если приборы поставляются с сосудами или это установлено в инструкциях, сосуды используют взамен кастрюли.

    Прибор работает без кастрюли, если это условие является более неблагоприятным.

    Источник: ГОСТ Р 52161.2.12-2005: Безопасность бытовых и аналогичных электрических приборов. Часть 2.12. Частные требования для мармитов и аналогичных приборов оригинал документа

    нормальная работа (normal operation): Работа прибора при следующих условиях.

    Прибор работает заполненный текстильным материалом массой в сухом состоянии, равной максимальной массе, установленной в инструкциях.

    Текстильный материал представляет собой предварительно постиранные, подрубленные двойным швом хлопчатобумажные простыни размером приблизительно 70´70 см, удельной массой в сухом состоянии от 140 до 175 г/м2.

    Текстильный материал замачивают в воде, имеющей температуру (25 ± 5) °С и массу, равную массе текстильного материала.

    Если функция сушки может автоматически следовать за функцией стирки в стиральной машине, прибор не загружают отдельно. Прибор работает с максимальным количеством текстильного материала, установленным в инструкциях для комбинированного цикла стирки - сушки.

    Примечание 101 - Хлопок, в котором содержание влаги не превышает 10 %, рассматривают как находящийся в сухом состоянии.

    Хлопок кондиционируют 24 ч в спокойном воздухе при температуре (20 ± 2) °С, относительной влажности от 60 % до 70 % и атмосферном давлении от 860 до 1060 мбар, с содержанием воды приблизительно 7 %.

    Источник: ГОСТ Р 52161.2.11-2005: Безопасность бытовых и аналогичных электрических приборов. Часть 2.11. Частные требования для барабанных сушилок оригинал документа

    нормальная работа (normal operation): Работа прибора при следующих условиях.

    Зарядные устройства батарей для зарядки батарей свинцово-кислотных аккумуляторов и другие зарядные устройства батарей, имеющие номинальный постоянный выходной ток не более 20 А, подсоединяют к цепи, как приведено на рисунке 101. Переменный резистор настраивают таким образом, чтобы ток в цепи был равен номинальному постоянному выходному току при питании зарядного устройства батарей номинальным напряжением.

    x006.jpg

    U1 - напряжение питания; U2 - выходное напряжение; I2 - выходной ток; A - амперметр; В - зарядное устройство батарей; V - вольтметр; R - переменный резистор;

    x008.gif

    где Ir - номинальный постоянный выходной ток, А;

    р - коэффициент (для однополупериодного выпрямления р = 1; для двухполупериодного выпрямления р = 2);

    f - частота питающей сети, Гц;

    Ur - номинальное выходное напряжение постоянного тока, В.

    Примечания

    1 Конденсатор может иметь емкость, отличающуюся от рассчитанной на ± 20 %.

    2 Конденсатор может быть предварительно заряжен до начала работы зарядного устройства батарей.

    Рисунок 101 - Цепь для испытания зарядных устройств батарей

    Если зарядный ток управляет процессом зарядки батареи, то переменный резистор и конденсатор заменяют разряженной батареей соответствующего типа и максимальной емкости, указанных в инструкциях.

    Другие зарядные устройства батарей подсоединяют к разряженной батарее соответствующего типа и максимальной емкости, указанных в инструкциях.

    Примечание 101 - Батареи считают разряженными, если:

    - плотность электролита менее 1,16 - для батарей свинцово-кислотных аккумуляторов;

    - напряжение каждого элемента менее 0,9 В - для батарей никель-кадмиевых аккумуляторов.

    Источник: ГОСТ Р 52161.2.29-2007: Безопасность бытовых и аналогичных электрических приборов. Часть 2.29. Частные требования для зарядных устройств батарей оригинал документа

    нормальная работа (normal operation): Работа прибора при следующих условиях.

    Текстильные изделия располагают на вешалках или перекладинах в соответствии с инструкциями. Текстильные изделия представляют собой предварительно выстиранные хлопчатобумажные простыни с двойным подрубочным швом размером приблизительно 700×700 мм, массой от 140 до 175 г/м2, определенной в сухом состоянии.

    Четыре слоя текстильного изделия используют для приборов, имеющих нагреваемую поверхность, на которую для высушивания помещают текстильное изделие. Один слой используют для приборов, в которых текстильное изделие высушивается потоком теплого воздуха.

    Примечание 101 - В случае возникновения сомнений хлопчатобумажные простыни подвергают кондиционированию в течение не менее 24 ч при температуре (20 ± 5) °С и относительной влажности (60 ± 5) %.

    Источник: ГОСТ Р 52161.2.43-2008: Безопасность бытовых и аналогичных электрических приборов. Часть 2.43. Частные требования к сушилкам для одежды и перекладинам для полотенец оригинал документа

    нормальная работа (normal operation): Работа прибора, постоянно подключенного к воде, поток которой отрегулирован таким образом, чтобы температура на выходе достигала максимального значения без срабатывания термовыключателя.

    Источник: ГОСТ Р 52161.2.35-2008: Безопасность бытовых и аналогичных электрических приборов. Часть 2.35. Частные требования к проточным водонагревателям оригинал документа

    нормальная работа (normal operation): Работа прибора при следующих условиях. Насос работает при нулевом давлении жидкости на входе, в режиме работы между минимальным и максимальным напором, таким образом, чтобы достигалась наибольшая потребляемая мощность.

    Примечание 101 - Напор измеряют между входным и выходным отверстиями.

    Источник: ГОСТ Р 52161.2.41-2008: Безопасность бытовых и аналогичных электрических приборов. Часть 2.41. Частные требования к насосам оригинал документа

    нормальная работа (normal operation): Работа прибора в том виде, в каком он был поставлен изготовителем, или с закороченной выходной цепью высокого напряжения в зависимости от того, что наиболее неблагоприятно.

    Источник: ГОСТ Р 52161.2.65-2008: Безопасность бытовых и аналогичных электрических приборов. Часть 2.65. Частные требования к приборам для очистки воздуха оригинал документа

    нормальная работа (normal operation): Работа приборов при следующих условиях.

    Приборы с подставкой работают на подставке, если не указано иное.

    Другие приборы работают в соответствии с инструкциями, если не указано иное.

    Источник: ГОСТ Р 52161.2.45-2008: Безопасность бытовых и аналогичных электрических приборов. Часть 2.45. Частные требования к переносным нагревательным инструментам и аналогичным приборам оригинал документа

    нормальная работа (normal operation): Работа циркуляционного насоса с давлением воды и скоростью потока, отрегулированными в установленных пределах так, чтобы достигалась максимальная потребляемая мощность.

    Источник: ГОСТ Р 52161.2.51-2008: Безопасность бытовых и аналогичных электрических приборов. Часть 2.51. Частные требования к стационарным циркуляционным насосам для отопительных систем и систем водоснабжения оригинал документа

    нормальная работа (normal operation): Работа прибора при следующих условиях:

    - выходная цепь закорочена;

    - решетки расположены на максимальном расстоянии, достаточном для поддержания дуги, прибор работает циклами; цикл состоит из 1 с работы и 2 с паузы;

    - к решеткам подключена активная нагрузка, которая обеспечивает получение максимального тока.

    Источник: ГОСТ Р 52161.2.59-2008: Безопасность бытовых и аналогичных электрических приборов. Часть 2.59. Частные требования к приборам для уничтожения насекомых оригинал документа

    Русско-английский словарь нормативно-технической терминологии > нормальная работа

  • 10 сигнализатор перегрева

    1. temperature alarm device

     

    сигнализатор перегрева
    Устройство для подачи аварийного сигнала, когда температура теплового датчика превышает установленный предел.
    [ ГОСТ Р МЭК 60050-426-2006]


    Тематики

    EN

    3.31 сигнализатор перегрева (temperature alarm device): Устройство для подачи аварийного сигнала, когда температура теплового датчика превышает установленный предел.

    Источник: ГОСТ Р МЭК 60079-30-1-2009: Взрывоопасные среды. Резистивный распределенный электронагреватель. Часть 30-1. Общие технические требования и методы испытаний оригинал документа

    Русско-английский словарь нормативно-технической терминологии > сигнализатор перегрева

  • 11 система кондиционирования воздуха

    1. Klimaanlage

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 12 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 13 система кондиционирования воздуха

    1. air conditioning system

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 14 система кондиционирования воздуха

    1. système de conditionnement d'air

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 15 в

    аварийная ситуация в полете
    in-flight emergency
    аварийное табло в кабине экипажа
    cabin emergency light
    аварийный клапан сброса давления в системе кондиционирования
    conditioned air emergency valve
    автоматическая информация в районе аэродрома
    automatic terminal information
    автомат тяги в системе автопилота
    autopilot auto throttle
    аэровокзал в форме полумесяца
    crescent-shaped terminal
    аэродинамическая труба для испытаний на сваливание в штопор
    spin wind tunnel
    аэродинамическая труба для испытания моделей в натуральную величину
    full-scale wind tunnel
    балансировка в горизонтальном полете
    horizontal trim
    балансировка в полете
    operational trim
    безопасная дистанция в полете
    in-flight safe distance
    билет в одном направлении
    one-way ticket
    билет на полет в одном направлении
    single ticket
    боковой обзор в полете
    sideway inflight view
    в аварийной обстановке
    in emergency
    введение в вираж
    banking
    введение в действие пассажирских и грузовых тарифов
    fares and rates enforcement
    ввод в эксплуатацию
    introduction into service
    вводить воздушное судно в крен
    roll in the aircraft
    вводить в штопор
    put into the spin
    вводить в эксплуатацию
    1. go into service
    2. come into operation 3. place in service 4. enter service 5. introduce into service 6. put in service 7. put in operation вводить шестерни в зацепление
    mesh gears
    в воздухе
    1. up
    2. aloft вентилятор в кольцевом обтекателе
    duct fan
    вертолет в режиме висения
    hovering helicopter
    верхний обзор в полете
    upward inflight view
    ветер в верхних слоях атмосферы
    1. upper wind
    2. aloft wind ветер в направлении курса полета
    tailwind
    в заданном диапазоне
    within the range
    в западном направлении
    westward
    взлет в условиях плохой видимости
    low visibility takeoff
    в зоне влияния земли
    in ground effect
    в зоне действия луча
    on the beam
    видимость в полете
    flight visibility
    видимость в пределах допуска
    marginal visibility
    видимость у земли в зоне аэродрома
    aerodrome ground visibility
    визуальная оценка расстояния в полете
    distance assessment
    визуальный контакт в полете
    flight visual contact
    визуальный ориентир в полете
    flight visual cue
    в интересах безопасности
    in interests of safety
    висение в зоне влияния земли
    hovering in the ground effect
    вихрь в направлении линии полета
    line vortex
    в конце участка
    at the end of segment
    (полета) в конце хода
    at the end of stroke
    (поршня) в конце цикла
    at the end of
    в начале участка
    at the start of segment
    (полета) в начале цикла
    at the start of cycle
    в обратном направлении
    backward
    в ожидании разрешения
    pending clearance
    возвращаться в пункт вылета
    fly back
    воздух в пограничном слое
    boundary-layer air
    воздух в турбулентном состоянии
    rough air
    воздухозаборник в нижней части фюзеляжа
    belly intake
    воздушная обстановка в зоне аэродрома
    aerodrome air picture
    воздушное судно в зоне ожидания
    holding aircraft
    воздушное судно в полете
    1. making way aircraft
    2. aircraft on flight 3. in-flight aircraft воздушное судно, дозаправляемое в полете
    receiver aircraft
    воздушное судно, занесенное в реестр
    aircraft on register
    воздушное судно, находящееся в воздухе
    airborne aircraft
    воздушное судно, находящееся в эксплуатации владельца
    owner-operated aircraft
    воздушное судно, нуждающееся в помощи
    aircraft requiring assistance
    воздушное судно, прибывающее в конечный аэропорт
    terminating aircraft
    в подветренную сторону
    alee
    в поле зрения
    in sight
    в пределах
    within the frame of
    в процессе взлета
    during takeoff
    в процессе полета
    1. while in flight
    2. in flight в процессе руления
    while taxiing
    в рабочем состоянии
    operational
    в режиме
    in mode
    в режиме большого шага
    in coarse pitch
    в режиме готовности
    in alert
    в режиме малого шага
    in fine pitch
    в режиме самоориентирования
    when castoring
    время в рейсе
    1. chock-to-chock time
    2. ramp-to-ramp time 3. block-to-block hours 4. block-to-block time 5. ramp-to-ramp hours время налета в ночных условиях
    night flying time
    время налета в часах
    hour's flying time
    время фактического нахождения в воздухе
    actual airborne time
    в ряд
    abreast
    в случае задержки
    in the case of delay
    в случае происшествия
    in the event of a mishap
    в случая отказа
    in the event of malfunction
    в соответствии с техническими условиями
    in conformity with the specifications
    в состоянии бедствия
    in distress
    в состоянии готовности
    when under way
    в условиях обтекания
    airflow conditions
    в хвостовой части
    1. abaft
    2. aft вход в зону аэродрома
    1. entry into the aerodrome zone
    2. inward flight входить в глиссаду
    gain the glide path
    входить в зону глиссады
    reach the glide path
    входить в круг движения
    enter the traffic circuit
    входить в облачность
    enter clouds
    входить в разворот
    1. roll into the turn
    2. initiate the turn 3. enter the turn входить в условия
    penetrate conditions
    входить в штопор
    enter the spin
    входить в этап выравнивания
    entry into the flare
    вхожу в круг
    on the upwind leg
    в целях безопасности
    for reasons of safety
    выполнять полет в зоне ожидания
    hold over the aids
    выполнять полет в определенных условиях
    fly under conditions
    выполнять полет в режиме ожидания над аэродромом
    hold over the beacon
    выполнять установленный порядок действий в аварийной ситуации
    execute an emergency procedure
    выравнивание в линию горизонта
    levelling-off
    выравнивание при входе в створ ВПП
    runway alignment
    высота в зоне ожидания
    holding altitude
    высота в кабине
    cabin pressure
    высота плоскости ограничения препятствий в зоне взлета
    takeoff surface level
    высота полета в зоне ожидания
    holding flight level
    высотомер, показания которого выведены в ответчик
    squawk altimeter
    выход в равносигнальную зону
    bracketing
    в эксплуатации
    in service
    в эксплуатацию
    in operation
    гасить скорость в полете
    decelerate in the flight
    головокружение при полете в сплошной облачности
    cloud vertigo
    горизонт, видимый в полете
    in-flight apparent horizon
    господство в воздухе
    air supremacy
    граница высот повторного запуска в полете
    inflight restart envelope
    грубая ошибка в процессе полета
    in flight blunder
    груз, сброшенный в полете
    jettisoned load in flight
    давление в аэродинамической трубе
    wind-tunnel pressure
    давление в кабине
    cabin pressure
    давление в невозмущенном потоке
    undisturbed pressure
    давление в свободном потоке
    free-stream pressure
    давление в системе подачи топлива
    fuel supply pressure
    давление в системе стояночного тормоза
    perking pressure
    давление в скачке уплотнения
    shock pressure
    давление в спутной струе
    wake pressure
    давление в топливном баке
    tank pressure
    давление в тормозной системе
    brake pressure
    давление в точке отбора
    tapping pressure
    давление на входе в воздухозаборник
    air intake pressure
    дальность видимости в полете
    flight visual range
    дальность полета в невозмущенной атмосфере
    still-air flight range
    данные в узлах координатной сетки
    grid-point data
    данные о результатах испытания в воздухе
    air data
    двигатель, расположенный в крыле
    in-wing mounted
    двигатель, установленный в мотогондоле
    naccele-mounted engine
    двигатель, установленный в отдельной гондоле
    podded engine
    двигатель, установленный в фюзеляже
    in-board engine
    движение в зоне аэродрома
    aerodrome traffic
    движение в зоне аэропорта
    airport traffic
    действия в момент касания ВПП
    touchdown operations
    делать отметку в свидетельстве
    endorse the license
    делитель потока в заборном устройстве
    inlet splitter
    держать шарик в центре
    keep the ball centered
    дозаправка топливом в полете
    air refuelling
    дозаправлять топливом в полете
    refuel in flight
    допуск к работе в качестве пилота
    act as a pilot authority
    доставка пассажиров в аэропорт вылета
    pickup service
    единый тариф на полет в двух направлениях
    two-way fare
    завоевывать господство в воздухе
    gain the air supremacy
    задатчик высоты в кабине
    cabin altitude selector
    задержка в базовом аэропорту
    terminal delay
    зал таможенного досмотра в аэропорту
    airport customs room
    замер в полете
    inflight measurement
    заносить воздушное судно в реестр
    enter the aircraft
    запись вибрации в полете
    inflight vibration recording
    запись в формуляре
    log book entry
    запись переговоров в кабине экипажа
    cockpit voice recording
    запускать воздушное судно в производство
    put the aircraft into production
    запускать двигатель в полете
    restart the engine in flight
    запуск в воздухе
    1. air starting
    2. airstart запуск в полете
    inflight starting
    запуск в полете без включения стартера
    inflight nonassisted starting
    запуск в режиме авторотации
    windmill starting
    заход на посадку в режиме планирования
    gliding approach
    заход на посадку в условиях ограниченной видимости
    low-visibility approach
    зона движения в районе аэродрома
    aerodrome traffic zone
    изменение направления ветра в районе аэродрома
    aerodrome wind shift
    измерение шума в процессе летных испытаний
    flight test noise measurement
    иметь место в полете
    be experienced in flight
    имитация в полете
    inflight simulation
    имитация полета в натуральных условиях
    full-scale flight
    индекс опознавания в коде ответчика
    squawk ident
    индикатор обстановки в вертикальной плоскости
    vertical-situation indicator
    инструктаж при аварийной обстановке в полете
    inflight emergency instruction
    искусственные сооружения в районе аэродрома
    aerodrome culture
    испытание в аэродинамической трубе
    wind-tunnel test
    испытание в воздухе
    air trial
    испытание в гидроканале
    towing basing test
    испытание в двухмерном потоке
    two-dimensional flow test
    испытание вертолета в условиях снежного и пыльного вихрей
    rotocraft snow and dust test
    испытание воздушного судна в термобарокамере
    aircraft environmental test
    испытание в реальных условиях
    direct test
    испытание в режиме висения
    hovering test
    испытание в свободном полете
    free-flight test
    испытание двигателя в полете
    inflight engine test
    испытания в барокамере
    altitude-chamber test
    испытания по замеру нагрузки в полете
    flight stress measurement tests
    испытываемый в полете
    under flight test
    испытывать в полете
    test in flight
    исследование конфликтной ситуации в воздушном движении
    air conflict search
    канал в ступице турбины
    turbine bore
    канал передачи данных в полете
    flight data link
    карта особых явлений погоды в верхних слоях атмосферы
    high level significant weather chart
    кнопка запуска двигателя в воздухе
    flight restart button
    кок винта в сборе
    cone assy
    компенсация за отказ в перевозке
    denied boarding compensation
    компоновка кресел в салоне первого класса
    first-class seating
    компоновка кресел в салоне смешанного класса
    mixed-class seating
    компоновка кресел в салоне туристического класса
    economy-class seating
    компоновка приборной доски в кабине экипажа
    cockpit panel layout
    контракт на обслуживание в аэропорту
    airport handling contract
    контроль в зоне
    area watch
    контур уровня шума в районе аэропорта
    airport noise contour
    концевой выключатель в системе воздушного судна
    aircraft limit switch
    кривая в полярной системе координат
    polar curve
    крутящий момент воздушного винта в режиме авторотации
    propeller windmill torque
    курс в зоне ожидания
    holding course
    летать в курсовом режиме
    fly heading mode
    летать в режиме бреющего полета
    fly at a low level
    летать в светлое время суток
    fly by day
    летать в строю
    fly in formation
    летать в темное время суток
    fly at night
    летать по приборам в процессе тренировок
    fly under screen
    лететь в северном направлении
    fly northbound
    летная подготовка в условиях, приближенных к реальным
    line oriental flight training
    линия руления воздушного судна в зоне стоянки
    aircraft stand taxilane
    люк в крыле
    wing manhole
    маневр в полете
    inflight manoeuvre
    маршрут перехода в эшелона на участок захода на посадку
    feeder route
    маршрут полета в направлении от вторичных радиосредств
    track from secondary radio facility
    меры безопасности в полете
    flight safety precautions
    метеоусловия в пределах допуска
    marginal weather
    механизм для создания условий полета в нестабильной атмосфере
    rough air mechanism
    механизм открытия защелки в полете
    mechanical flight release latch
    мешать обзору в полете
    obscure inflight view
    набор высоты в крейсерском режиме
    cruise climb
    навигация в зоне подхода
    approach navigation
    нагрузка в полете
    flight load
    нагрузка в полете от поверхности управления
    flight control load
    надежность в полете
    inflight reliability
    направление в сторону подъема
    up-slope direction
    направление в сторону уклона
    down-slope direction
    направляющийся в
    bound for
    наработка в часах
    1. running hours
    2. endurance hours на участке маршрута в восточном направлении
    on the eastbound leg
    необходимые меры предосторожности в полете
    flight reasonable precautions
    неожиданное препятствие в полете
    hidden flight hazard
    неправильно оцененное расстояние в полете
    misjudged flight distance
    неправильно принятое в полете решение
    improper in-flight decision
    нижний обзор в полете
    downward inflight view
    носитель информации в виде металлической ленты
    metal tape medium
    носитель информации в виде пластиковой пленки
    plastic tape medium
    носитель информации в виде фольги
    engraved foil medium
    носитель информации в виде фотопленки
    photographic paper medium
    обзор в полете
    inflight view
    оборудование для полетов в темное время суток
    night-flying equipment
    обслуживание в процессе стоянки
    standing operation
    обслуживание пассажиров в городском аэровокзале
    city-terminal coach service
    обучение в процессе полетов
    flying training
    объем воздушных перевозка в тоннах груза
    airlift tonnage
    обязанности экипажа в аварийной обстановке
    crew emergency duty
    обязательно к выполнению в соответствии со статьей
    be compulsory Article
    ограничения, указанные в свидетельстве
    license limitations
    ожидание в процессе полета
    hold en-route
    опознавание в полете
    aerial identification
    опробование систем управления в кабине экипажа
    cockpit drill
    опыт работы в авиации
    aeronautical experience
    органы управления в кабине экипажа
    flight compartment controls
    осадки в виде крупных хлопьев снега
    snow grains precipitation
    осадки в виде ледяных крупинок
    ice pellets precipitation
    ослабление видимости в атмосфере
    atmospheric attenuation
    ослабление сигналов в атмосфере
    atmospheric loss
    ослаблять давление в пневматике
    deflate the tire
    осмотр в конце рабочего дня
    daily inspection
    особые меры в полете
    in-flight extreme care
    оставаться в горизонтальном положении
    remain level
    отводить воздух в атмосферу
    discharge air overboard
    отказ в перевозке
    1. denial of carriage
    2. denied boarding 3. bumping отработка действий на случай аварийной обстановки в аэропорту
    aerodrome emergency exercise
    отражатель в механизме реверса тяги
    power reversal ejector
    отсутствие ветра в районе
    aerodrome calm
    оценка пилотом ситуации в полете
    pilot judgement
    ошибка в настройке
    alignment error
    падение в перевернутом положении
    tip-over fall
    парить в воздухе
    sail
    перебои в зажигании
    misfire
    перебои в работе двигателя
    1. rough engine operations
    2. engine trouble переводить воздушное судно в горизонтальный полет
    put the aircraft over
    перевозка с оплатой в кредит
    collect transportation
    передача в пункте стыковки авиарейсов
    interline transfer
    передвижной диспетчерский пункт в районе ВПП
    runway control van
    передний обзор в полете
    forward inflight view
    переход в режим горизонтального полета
    puchover
    переходить в режим набора высоты
    entry into climb
    повторный запуск в полете
    flight restart
    подача топлива в систему воздушного судна
    aircraft fuel supply
    подниматься в воздух
    ago aloft
    пожар в отсеке шасси
    wheel-well fire
    поиск в условном квадрате
    square search
    полет в восточном направлении
    eastbound flight
    полет в зоне ожидания
    1. holding
    2. holding flight полет в направлении на станцию
    flight inbound the station
    полет в направлении от станции
    flight outbound the station
    полет в невозмущенной атмосфере
    still-air flight
    полет в нормальных метеоусловиях
    normal weather operation
    полет в обоих направлениях
    back-to-back flight
    полет в одном направлении
    one-way flight
    полет в пределах континента
    coast-to-coast flight
    полет в режиме висения
    hover flight
    полет в режиме ожидания
    holding operation
    полет в режиме ожидания на маршруте
    holding en-route operation
    полет в связи с особыми обстоятельствами
    special event flight
    полет в сложных метеоусловиях
    bad-weather flight
    полет в строю
    formation flight
    полет в условиях болтанки
    1. bumpy-air flight
    2. turbulent flight полет в условиях отсутствия видимости
    nonvisual flight
    полет в условиях плохой видимости
    low-visibility flight
    полет в установленной зоне
    standoff flight
    полет в установленном секторе
    sector flight
    полетное время, продолжительность полета в данный день
    flying time today
    полет по кругу в районе аэродрома
    aerodrome traffic circuit operation
    полет с дозаправкой топлива в воздухе
    refuelling flight
    полеты в районе открытого моря
    off-shore operations
    полеты в светлое время суток
    daylight operations
    полеты в темное время суток
    night operations
    положение амортизатора в обжатом состоянии
    shock strut compressed position
    положение в воздушном пространстве
    air position
    помпаж в воздухозаборнике
    air intake surge
    попадание в порыв ветра
    gust penetration
    попадание в турбулентность
    turbulence penetration
    порядок действий в аварийной обстановке
    emergency procedure
    порядок эксплуатации в зимних условиях
    snow plan
    посадка в режиме авторотации в выключенным двигателем
    power-off autorotative landing
    посадка в светлое время суток
    day landing
    посадка в сложных метеоусловиях
    bad weather landing
    посадка в темное время суток
    night landing
    потери в воздухозаборнике
    intake losses
    поток в промежуточных аэродромах
    pick-up traffic
    потолок в режиме висения
    hovering ceiling
    правила полета в аварийной обстановке
    emergency flight procedures
    представлять в закодированном виде
    submit in code
    предупреждение столкновений в воздухе
    mid air collision control
    препятствие в зоне захода на посадку
    approach area hazard
    препятствие в районе аэропорта
    airport hazard
    прибывать в зону аэродрома
    arrive over the aerodrome
    приведение в действие
    actuation
    приведение эшелонов в соответствие
    correlation of levels
    приводить в действие
    actuate
    приводить воздушное судно в состояние летной годности
    return an aircraft to flyable status
    приводить в рабочее состояние
    prepare for service
    приводить в состояние готовности
    alert to
    пригодный для полета только в светлое время суток
    available for daylight operation
    приспособление для захвата объектов в процессе полета
    flight pick-up equipment
    проверено в полете
    flight checked
    проверка в кабине экипажа
    cockpit check
    проверка в полете
    flight check
    проверка в процессе облета
    flyby check
    прогноз в графическом изображении
    pictorial forecast
    продолжительность в режиме висения
    hovering endurance
    продувать в аэродинамической трубе
    test in the wind tunnel
    производить посадку в самолет
    emplane
    происшествие в районе аэропорта
    airport-related accident
    прокладка в системе двигателя
    engine gasket
    прокладка маршрута в районе аэродрома
    terminal routing
    пропуск на вход в аэропорт
    airport laissez-passer
    просвет в облачности
    cloud gap
    пространственная ориентация в полете
    inflight spatial orientation
    пространственное положение в момент удара
    attitude at impact
    противобликовая защита в кабине
    cabin glare protection
    профиль волны в свободном поле
    free-field signature
    профиль местности в районе аэродрома
    aerodrome ground profile
    пружина распора в выпущенном положении
    downlock bungee spring
    (опоры шасси) пункт назначения, указанный в авиабилете
    ticketed destination
    пункт назначения, указанный в купоне авиабилета
    coupon destination
    работа в режиме запуска двигателя
    engine start mode
    работа только в режиме приема
    receiving only
    радиолокационный обзор в полете
    inflight radar scanning
    радиус действия радиолокатора в режиме поиска
    radar search range
    разворот в процессе планирования
    gliding turn
    разворот в режиме висения
    hovering turn
    разворот в сторону приближения
    inbound turn
    разворот в сторону удаления
    outbound turn
    размещать в воздушном судне
    fill an aircraft with
    разница в тарифах по классам
    class differential
    разрешение в процессе полета по маршруту
    en-route clearance
    разрешение на полет в зоне ожидания
    holding clearance
    расстояние в милях
    mileage
    расстояние в милях между указанными в билете пунктами
    ticketed point mileage
    расчетное время в пути
    estimated time en-route
    регистрация в зале ожидания
    concourse check
    регулятор давления в кабине
    cabin pressure regulator
    режим воздушного потока в заборнике воздуха
    inlet airflow schedule
    режим малого газа в заданных пределах
    deadband idle
    речевой регистратор переговоров в кабине экипажа
    cockpit voice recorder
    руководство по производству полетов в зоне аэродрома
    aerodrome rules
    рулежная дорожка в районе аэровокзала
    terminal taxiway
    сближение в полете
    air miss
    сваливание в штопор
    spin stall
    сдавать в багаж
    park in the baggage
    сдвиг ветра в зоне полета
    flight wind shear
    сигнал бедствия в коде ответчика
    squawk mayday
    сигнал входа в глиссаду
    on-slope signal
    сигнал действий в полете
    flight urgency signal
    сигнализация аварийной обстановки в полете
    air alert warning
    сигнал между воздушными судами в полете
    air-to-air signal
    сигнальные огни входа в створ ВПП
    runway alignment indicator lights
    система предупреждения конфликтных ситуаций в полете
    conflict alert system
    система распространения информации в определенные интервалы времени
    fixed-time dissemination system
    система регулирования температуры воздуха в кабине
    cabin temperature control system
    скольжение в направлении полета
    forwardslip
    скорость в условиях турбулентности
    1. rough-air speed
    2. rough airspeed скрытое препятствие в районе ВПП
    runway hidden hazard
    сложные метеоусловия в районе аэродрома
    aerodrome adverse weather
    служба управления движением в зоне аэродрома
    aerodrome control service
    служба управления движением в зоне аэропорта
    airport traffic service
    смесеобразование в карбюраторе
    carburetion
    с момента ввода в эксплуатацию
    since placed in service
    снежный заряд в зоне полета
    inflight snow showers
    снижение в режиме авторотации
    autorotative descent
    снижение в режиме планирования
    gliding descent
    снижение в режиме торможения
    braked descent
    снимать груз в контейнере
    discharge the cargo
    событие в результате непреднамеренных действий
    unintentional occurrence
    совершать посадку в направлении ветра
    land downwind
    согласованность в действиях
    coherence
    списание девиации в полете
    airswinging
    списание девиации компаса в полете
    air compass swinging
    списание радиодевиации в полете
    airborne error measurement
    способность выполнять посадку в сложных метеорологических условиях
    all-weather landing capability
    срок службы в часах налета
    flying life
    срываться в штопор
    1. fall into the spin
    2. fail into the spin ставить в определенное положение
    pose
    столкновение в воздухе
    1. mid-air collision
    2. aerial collision схема в зоне ожидания
    holding pattern
    схема входа в диспетчерскую зону
    entry procedure
    схема входа в зону ожидания
    holding entry procedure
    схема движения в зоне аэродрома
    aerodrome traffic pattern
    схема полета в зоне ожидания
    holding procedure
    схема полета по приборам в зоне ожидания
    instrument holding procedure
    счетчик пройденного километража в полете
    air-mileage indicator
    считывание показаний приборов в полете
    flight instrument reading
    тариф в местной валюте
    local currency fare
    тариф в одном направлении
    directional rate
    тариф для полета в одном направлении
    single fare
    тариф за перевозку грузов в специальном приспособлении для комплектования
    unit load device rate
    тариф на полет в ночное время суток
    night fare
    тариф на полет с возвратом в течение суток
    day round trip fare
    телесное повреждение в результате авиационного происшествия
    accident serious injury
    температура в данной точке
    local temperature
    температура воздуха в трубопроводе
    duct air temperature
    температура газов на входе в турбину
    turbine entry temperature
    температура на входе в турбину
    turbine inlet temperature
    траектория полета в зоне ожидания
    holding path
    трение в опорах
    bearing friction
    тренировка в барокамере
    altitude chamber drill
    турбулентность в атмосфере без облаков
    clear air turbulence
    турбулентность в облаках
    turbulence in clouds
    турбулентность в спутном следе
    wake turbulence
    тяга в полете
    flight thrust
    угроза применения взрывчатого устройства в полете
    inflight bomb threat
    удельный расход топлива на кг тяги в час
    thrust specific fuel consumption
    удерживать контакты в замкнутом положении
    hold contacts closed
    удостоверяющая запись в свидетельстве
    licence endorsement
    указания по условиям эксплуатации в полете
    inflight operational instructions
    указатель входа в створ ВПП
    runway alignment indicator
    указатель высоты в кабине
    cabin altitude indicator
    указатель местоположения в полете
    air position indicator
    указатель перепада давления в кабине
    cabin pressure indicator
    указатель уровня в баке
    tank level indicator
    уменьшение ограничений в воздушных перевозках
    air transport facilitation
    упаковывать в контейнере
    containerize
    упаковывать груз в контейнере
    containerize the cargo
    управление в зоне
    area control
    управление в зоне аэродрома
    aerodrome control
    управление в зоне захода на посадку
    approach control
    уровень шума в населенном пункте
    community noise level
    уровень шумового фона в кабине экипажа
    flight deck aural environment
    уровень шумового фона в районе аэропорта
    acoustic airport environment
    уровень электролита в аккумуляторе
    battery electrolyte level
    усилие в системе управления
    control force
    условия в полете
    in-flight conditions
    условия в районе аэродрома
    aerodrome environment
    условия в районе ВПП
    runway environment
    условия нагружения в полете
    flight loading conditions
    условное обозначение в сообщении о ходе полета
    flight report identification
    условное обозначение события в полете
    flight occurrence identification
    устанавливать наличие воздушной пробки в системе
    determine air in a system
    установка в определенное положение
    positioning
    установка в положение для захода на посадку
    approach setting
    установленные обязанности в полете
    prescribed flight duty
    установленный в гондоле
    nacelle-mounted
    устойчивость в полете
    inflight stability
    устройство отображения информации в кабине экипажа
    cockpit display
    устройство разворота в нейтральное положение
    self-centering device
    уточнение плана полета по сведениям, полученным в полете
    inflight operational planning
    ухудшение в полете
    flight deterioration
    участие в расследовании
    participation in the investigation
    форма крыла в плане
    wing planform
    характеристика в зоне ожидания
    holding performance
    цифровая система наведения в полете
    digital flight guidance system
    чартерный рейс в связи с особыми обстоятельствами
    special event charter
    число оборотов в минуту
    revolutions per minute
    чрезвычайное обстоятельство в полете
    flight emergency circumstance
    шаг в режиме торможения
    braking pitch
    шасси, убирающееся в фюзеляж
    inward retracting landing gear
    шлиц в головке винта
    screw head slot
    эксплуатировать в заданных условиях
    operate under the conditions
    эксплуатировать в соответствии с техникой безопасности
    operate safety
    этапа полета в пределах одного государства
    domestic flight stage
    этап входа в глиссаду
    glide capture phase
    этап полета, указанный в полетном купоне
    flight coupon stage
    эшелонирование в зоне ожидание
    holding stack

    Русско-английский авиационный словарь > в

  • 16 теплоснабжение

    1. Wärmeversorgung
    2. Fernwärmeversorgung

     

    теплоснабжение
    Обеспечение потребителей теплом.
    [ ГОСТ 19431-84]

    теплоснабжение
    Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.
    [ ГОСТ Р 54860-2011]

    теплоснабжение
    Совокупность мероприятий по обеспечению систем отопления, вентиляции и горячего водоснабжения теплом с помощью теплоносителя
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Федеральный закон РФ N 190-ФЗ
    от 27 июля 2010 года

    О ТЕПЛОСНАБЖЕНИИ

    (в ред. Федеральных законов от 04.06.2011 N 123-ФЗ, от 18.07.2011 N 242-ФЗ, от 07.12.2011 N 417-ФЗ (ред. 30.12.2012), от 25.06.2012 N 93-ФЗ, от 30.12.2012 N 291-ФЗ, от 30.12.2012 N 318-ФЗ)

    Принят Государственной Думой 9 июля 2010 года

    Одобрен Советом Федерации 14 июля 2010 года

    Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ

    Статья 1. Предмет регулирования настоящего Федерального закона

    1. Настоящий Федеральный закон устанавливает правовые основы экономических отношений, возникающих в связи с производством, передачей, потреблением тепловой энергии, тепловой мощности, теплоносителя с использованием систем теплоснабжения, созданием, функционированием и развитием таких систем, а также определяет полномочия органов государственной власти, органов местного самоуправления поселений, городских округов по регулированию и контролю в сфере теплоснабжения, права и обязанности потребителей тепловой энергии, теплоснабжающих организаций, теплосетевых организаций.

    2. Отношения, связанные с горячим водоснабжением, осуществляемым с использованием открытых систем теплоснабжения (горячего водоснабжения), регулируются настоящим Федеральным законом, за исключением отношений, связанных с обеспечением качества и безопасности горячей воды.

    3. К отношениям, связанным с производством, передачей, потреблением горячей воды при осуществлении горячего водоснабжения с использованием открытых систем теплоснабжения (горячего водоснабжения), применяются положения настоящего Федерального закона, регулирующие производство, передачу, потребление теплоносителя, если иное не предусмотрено настоящим Федеральным законом.

    Статья 2. Основные понятия, используемые в настоящем Федеральном законе

    Для целей настоящего Федерального закона используются следующие основные понятия:

    1) тепловая энергия - энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);

    2) качество теплоснабжения - совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя;

    3) источник тепловой энергии - устройство, предназначенное для производства тепловой энергии;

    4) теплопотребляющая установка - устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;

    4.1) теплоноситель - пар, вода, которые используются для передачи тепловой энергии. Теплоноситель в виде воды в открытых системах теплоснабжения (горячего водоснабжения) может использоваться для теплоснабжения и для горячего водоснабжения;

    5) тепловая сеть - совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;

    6) тепловая мощность (далее - мощность) - количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;

    7) тепловая нагрузка - количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;

    8) теплоснабжение - обеспечение потребителей тепловой энергии тепловой энергией, теплоносителем, в том числе поддержание мощности;

    9) потребитель тепловой энергии (далее также - потребитель) - лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;

    10) инвестиционная программа организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, - программа мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надежности и энергетической эффективности системы теплоснабжения, подключения (технологического присоединения) теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения;

    11) теплоснабжающая организация - организация, осуществляющая продажу потребителям и (или) теплоснабжающим организациям произведенных или приобретенных тепловой энергии (мощности), теплоносителя и владеющая на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в системе теплоснабжения, посредством которой осуществляется теплоснабжение потребителей тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    12) передача тепловой энергии, теплоносителя - совокупность организационно и технологически связанных действий, обеспечивающих поддержание тепловых сетей в состоянии, соответствующем установленным техническими регламентами требованиям, прием, преобразование и доставку тепловой энергии, теплоносителя;

    13) коммерческий учет тепловой энергии, теплоносителя (далее также - коммерческий учет) - установление количества и качества тепловой энергии, теплоносителя, производимых, передаваемых или потребляемых за определенный период, с помощью приборов учета тепловой энергии, теплоносителя (далее - приборы учета) или расчетным путем в целях использования сторонами при расчетах в соответствии с договорами;

    14) система теплоснабжения - совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями;

    15) режим потребления тепловой энергии - процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе техническими регламентами, и условиями договора теплоснабжения;

    16) теплосетевая организация - организация, оказывающая услуги по передаче тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    17) надежность теплоснабжения - характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;

    18) регулируемый вид деятельности в сфере теплоснабжения - вид деятельности в сфере теплоснабжения, при осуществлении которого расчеты за товары, услуги в сфере теплоснабжения осуществляются по ценам (тарифам), подлежащим в соответствии с настоящим Федеральным законом государственному регулированию, а именно:

    а) реализация тепловой энергии (мощности), теплоносителя, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены реализации по соглашению сторон договора;

    б) оказание услуг по передаче тепловой энергии, теплоносителя;

    в) оказание услуг по поддержанию резервной тепловой мощности, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены услуг по соглашению сторон договора;

    19) орган регулирования тарифов в сфере теплоснабжения (далее также - орган регулирования) - уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения (далее - федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения), уполномоченный орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) (далее - орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) либо орган местного самоуправления поселения или городского округа в случае наделения соответствующими полномочиями законом субъекта Российской Федерации, осуществляющие регулирование цен (тарифов) в сфере теплоснабжения;

    19.1) открытая система теплоснабжения (горячего водоснабжения) - технологически связанный комплекс инженерных сооружений, предназначенный для теплоснабжения и горячего водоснабжения путем отбора горячей воды из тепловой сети;

    20) схема теплоснабжения - документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;

    21) резервная тепловая мощность - тепловая мощность источников тепловой энергии и тепловых сетей, необходимая для обеспечения тепловой нагрузки теплопотребляющих установок, входящих в систему теплоснабжения, но не потребляющих тепловой энергии, теплоносителя;

    22) топливно-энергетический баланс - документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию субъекта Российской Федерации или муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;

    23) тарифы в сфере теплоснабжения - система ценовых ставок, по которым осуществляются расчеты за тепловую энергию (мощность), теплоноситель и за услуги по передаче тепловой энергии, теплоносителя;

    24) точка учета тепловой энергии, теплоносителя (далее также - точка учета) - место в системе теплоснабжения, в котором с помощью приборов учета или расчетным путем устанавливаются количество и качество производимых, передаваемых или потребляемых тепловой энергии, теплоносителя для целей коммерческого учета;

    25) комбинированная выработка электрической и тепловой энергии - режим работы теплоэлектростанций, при котором производство электрической энергии непосредственно связано с одновременным производством тепловой энергии;

    26) б азовый режим работы источника тепловой энергии - режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника;

    27) "пиковый" режим работы источника тепловой энергии - режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

    28) единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    29) бездоговорное потребление тепловой энергии - потребление тепловой энергии, теплоносителя без заключения в установленном порядке договора теплоснабжения, либо потребление тепловой энергии, теплоносителя с использованием теплопотребляющих установок, подключенных (технологически присоединенных) к системе теплоснабжения с нарушением установленного порядка подключения (технологического присоединения), либо потребление тепловой энергии, теплоносителя после введения ограничения подачи тепловой энергии в объеме, превышающем допустимый объем потребления, либо потребление тепловой энергии, теплоносителя после предъявления требования теплоснабжающей организации или теплосетевой организации о введении ограничения подачи тепловой энергии или прекращении потребления тепловой энергии, если введение такого ограничения или такое прекращение должно быть осуществлено потребителем;

    30) радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение (технологическое присоединение) теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;

    31) плата за подключение (технологическое присоединение) к системе теплоснабжения - плата, которую вносят лица, осуществляющие строительство здания, строения, сооружения, подключаемых (технологически присоединяемых) к системе теплоснабжения, а также плата, которую вносят лица, осуществляющие реконструкцию здания, строения, сооружения в случае, если данная реконструкция влечет за собой увеличение тепловой нагрузки реконструируемых здания, строения, сооружения (далее также - плата за подключение (технологическое присоединение);

    32) живучесть - способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырех часов) остановок.

    Статья 3. Общие принципы организации отношений и основы государственной политики в сфере теплоснабжения

    1. Общими принципами организации отношений в сфере теплоснабжения являются:

    1) обеспечение надежности теплоснабжения в соответствии с требованиями технических регламентов;

    2) обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных федеральными законами;

    3) обеспечение приоритетного использования комбинированной выработки электрической и тепловой энергии для организации теплоснабжения;

    4) развитие систем централизованного теплоснабжения;

    5) соблюдение баланса экономических интересов теплоснабжающих организаций и интересов потребителей;

    6) обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала;

    7) обеспечение недискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения;

    8) обеспечение экологической безопасности теплоснабжения.

    2. Государственная политика в сфере теплоснабжения направлена на обеспечение соблюдения общих принципов организации отношений в сфере теплоснабжения, установленных настоящей статьей.

    Глава 2. ПОЛНОМОЧИЯ ОРГАНОВ ГОСУДАРСТВЕННОЙ ВЛАСТИ, ОРГАНОВ МЕСТНОГО САМОУПРАВЛЕНИЯ ПОСЕЛЕНИЙ, ГОРОДСКИХ ОКРУГОВ В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 4. Полномочия Правительства Российской Федерации, федеральных органов исполнительной власти в сфере теплоснабжения

    1. К полномочиям Правительства Российской Федерации в сфере теплоснабжения относятся:

    1) разработка государственной политики в сфере теплоснабжения, являющейся частью энергетической стратегии России;

    2) утверждение правил организации теплоснабжения;

    3) утверждение правил подключения (технологического присоединения) к системам теплоснабжения;

    3.1) утверждение правил коммерческого учета тепловой энергии, теплоносителя;

    4) утверждение правил согласования и утверждения инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, а также требований к составу и содержанию таких программ (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике);

    5) утверждение стандартов раскрытия информации теплоснабжающими организациями, теплосетевыми организациями, органами регулирования;

    6) утверждение основ ценообразования в сфере теплоснабжения, правил регулирования цен (тарифов) в сфере теплоснабжения, которые должны включать в себя сроки рассмотрения дел об установлении таких тарифов, исчерпывающий перечень представляемых организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, документов, определение условий и порядка принятия решений об отмене регулирования таких тарифов;

    7) утверждение порядка рассмотрения разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации в области государственного регулирования цен (тарифов), органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, потребителями тепловой энергии при установлении цен (тарифов) в сфере теплоснабжения, при разработке, утверждении и актуализации схем теплоснабжения;

    8) утверждение порядка определения системы мер по обеспечению надежности систем теплоснабжения;

    8.1) утверждение порядка определения целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    9) утверждение порядка вывода в ремонт и из эксплуатации источников тепловой энергии, тепловых сетей;

    10) утратил силу с 1 января 2013 года. - Федеральный закон от 07.12.2011 N 417-ФЗ;

    11) утверждение требований к схемам теплоснабжения, порядку их разработки и утверждения;

    12) утверждение порядка установления долгосрочных параметров регулирования деятельности организаций в отнесенной законодательством Российской Федерации к сферам деятельности субъектов естественных монополий сфере теплоснабжения и (или) цен (тарифов) в сфере теплоснабжения, которые подлежат регулированию в соответствии с перечнем, определенным в статье 8 настоящего Федерального закона;

    13) утверждение порядка заключения долгосрочных договоров теплоснабжения по ценам, определенным соглашением сторон, в целях обеспечения потребления тепловой энергии (мощности), теплоносителя объектами, потребляющими тепловую энергию (мощность), теплоноситель и введенными в эксплуатацию после 1 января 2010 года;

    14) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил определения стоимости активов и инвестированного капитала, правил ведения их раздельного учета, применяемых при осуществлении деятельности, регулируемой с использованием метода доходности инвестированного капитала;

    15) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил распределения удельного расхода топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии;

    15.1) установление порядка расчета размера возмещения организациям, осуществляющим регулируемые виды деятельности в сфере теплоснабжения, недополученных доходов от регулируемых видов деятельности в сфере теплоснабжения за счет средств бюджетов бюджетной системы Российской Федерации в связи с принятием уполномоченными органами решений об изменении установленных долгосрочных тарифов в сфере теплоснабжения, и (или) необходимой валовой выручки теплоснабжающих организаций, теплосетевых организаций, определенной в соответствии с основами ценообразования в сфере теплоснабжения на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, и (или) долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, а также решений об установлении долгосрочных тарифов на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, отличных от долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, установленных органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов или в пределах переданных полномочий органом местного самоуправления поселения или городского округа либо согласованных ими в соответствии с законодательством Российской Федерации о концессионных соглашениях, в установленных настоящим Федеральным законом случаях возмещения недополученных доходов;

    16) иные полномочия, установленные настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям федерального органа исполнительной власти, уполномоченного на реализацию государственной политики в сфере теплоснабжения, относятся:

    1) утратил силу с 1 апреля 2014 года. - Федеральный закон от 30.12.2012 N 291-ФЗ;

    2) утверждение правил оценки готовности к отопительному периоду;

    3) установление порядка расследования причин аварийных ситуаций при теплоснабжении;

    4) установление порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, нормативов удельного расхода топлива при производстве тепловой энергии, нормативов запасов топлива на источниках тепловой энергии (за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе в целях государственного регулирования цен (тарифов) в сфере теплоснабжения;

    5) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более, а также нормативов запасов топлива на источниках тепловой энергии при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    6) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, расположенным в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, а также в городах федерального значения Москве и Санкт-Петербурге;

    7) ведение государственного реестра саморегулируемых организаций в сфере теплоснабжения;

    8) осуществление государственного контроля и надзора за деятельностью саморегулируемых организаций в сфере теплоснабжения;

    9) обращение в суд с требованием об исключении некоммерческой организации из государственного реестра саморегулируемых организаций в случаях, предусмотренных настоящим Федеральным законом;

    10) утверждение порядка составления топливно-энергетических балансов субъектов Российской Федерации, муниципальных образований;

    11) утверждение схем теплоснабжения поселений, городских округов с численностью населения пятьсот тысяч человек и более, а также городов федерального значения Москвы и Санкт-Петербурга, в том числе определение единой теплоснабжающей организации;

    12) рассмотрение разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации, органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, и потребителями при разработке, утверждении и актуализации схем теплоснабжения;

    13) утверждение порядка осуществления мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    14) утверждение методики комплексного определения показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения, и порядка осуществления мониторинга таких показателей;

    15) утверждение порядка осуществления контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике).

    3. Федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения реализует предусмотренные частью 2 статьи 7 настоящего Федерального закона полномочия в области государственного регулирования цен (тарифов) в сфере теплоснабжения.

    4. К полномочиям федерального антимонопольного органа относятся:

    1) антимонопольное регулирование и контроль в сфере теплоснабжения;

    2) согласование решений органов исполнительной власти субъектов Российской Федерации об отмене регулирования тарифов в сфере теплоснабжения и о введении регулирования тарифов в сфере теплоснабжения после их отмены, выдача предписаний об отмене регулирования тарифов в сфере теплоснабжения.

    5. Федеральные органы исполнительной власти, указанные в частях 2 - 4 настоящей статьи, осуществляют контроль (надзор) за соблюдением органами исполнительной власти субъектов Российской Федерации и органами местного самоуправления поселений, городских округов требований законодательства Российской Федерации в сфере теплоснабжения.

    6. Правительство Российской Федерации или уполномоченный федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения устанавливает (в случаях и в порядке, которые определены основами ценообразования в сфере теплоснабжения) предельные (минимальные и (или) максимальные) индексы роста цен (тарифов), учитываемые при переходе к государственному регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы применяются в отношении цен (тарифов), рассчитываемых на каждый год долгосрочного периода регулирования в порядке, установленном основами ценообразования в сфере теплоснабжения, при переходе к регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы на второй долгосрочный период регулирования и последующие долгосрочные периоды регулирования определяются с учетом обеспечения возврата и доходности капитала, инвестированного в течение предыдущего долгосрочного периода регулирования или предыдущих долгосрочных периодов регулирования в соответствии с принятыми органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов либо в пределах переданных полномочий органом местного самоуправления поселения или городского округа решениями об установлении тарифов или долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения.

    Статья 5. Полномочия органов государственной власти субъектов Российской Федерации в сфере теплоснабжения

    1. Органы государственной власти субъектов Российской Федерации осуществляют полномочия по государственному регулированию и контролю в сфере теплоснабжения в соответствии с настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям органов исполнительной власти субъектов Российской Федерации в сфере теплоснабжения относятся:

    1) реализация предусмотренных частью 3 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    2) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, за исключением тепловых сетей, расположенных в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, в городах федерального значения Москве и Санкт-Петербурге;

    3) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    4) утверждение нормативов запасов топлива на источниках тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    5) утверждение инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, с применением установленных органами исполнительной власти субъекта Российской Федерации целевых показателей надежности и качества поставляемых товаров и оказываемых услуг такими организациями, по согласованию с органами местного самоуправления поселений, городских округов;

    6) определение системы мер по обеспечению надежности систем теплоснабжения поселений, городских округов в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    7) составление топливно-энергетического баланса субъекта Российской Федерации;

    7.1) осуществление мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    7.2) осуществление мониторинга показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения;

    7.3) осуществление контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, которые утверждаются в соответствии с законодательством Российской Федерации об электроэнергетике), в том числе за достижением этими организациями целевых показателей надежности и качества поставляемых товаров и оказываемых услуг в результате реализации мероприятий таких программ;

    7.4) определение целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    8) иные полномочия, предусмотренные другими федеральными законами.

    Статья 6. Полномочия органов местного самоуправления поселений, городских округов в сфере теплоснабжения

    1. К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относятся:

    1) организация обеспечения надежного теплоснабжения потребителей на территориях поселений, городских округов, в том числе принятие мер по организации обеспечения теплоснабжения потребителей в случае неисполнения теплоснабжающими организациями или теплосетевыми организациями своих обязательств либо отказа указанных организаций от исполнения своих обязательств;

    2) рассмотрение обращений потребителей по вопросам надежности теплоснабжения в порядке, установленном правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    3) реализация предусмотренных частями 5 - 7 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    4) выполнение требований, установленных правилами оценки готовности поселений, городских округов к отопительному периоду, и контроль за готовностью теплоснабжающих организаций, теплосетевых организаций, отдельных категорий потребителей к отопительному периоду;

    5) согласование вывода источников тепловой энергии, тепловых сетей в ремонт и из эксплуатации;

    6) утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации;

    7) согласование инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, за исключением таких программ, которые согласовываются в соответствии с законодательством Российской Федерации об электроэнергетике.

    2. Полномочия органов местного самоуправления городов федерального значения Москвы и Санкт-Петербурга по организации теплоснабжения на внутригородских территориях определяются законами указанных субъектов Российской Федерации исходя из необходимости сохранения единства городских хозяйств с учетом положений настоящего Федерального закона.

    Глава 3. ГОСУДАРСТВЕННАЯ ПОЛИТИКА ПРИ УСТАНОВЛЕНИИ РЕГУЛИРУЕМЫХ ЦЕН (ТАРИФОВ) В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 7. Принципы регулирования цен (тарифов) в сфере теплоснабжения и полномочия органов исполнительной власти, органов местного самоуправления поселений, городских округов в области регулирования цен (тарифов) в сфере теплоснабжения

    1. Регулирование цен (тарифов) в сфере теплоснабжения осуществляется в соответствии со следующими основными принципами:

    1) обеспечение доступности тепловой энергии (мощности), теплоносителя для потребителей;

    2) обеспечение экономической обоснованности расходов теплоснабжающих организаций, теплосетевых организаций на производство, передачу и сбыт тепловой энергии (мощности), теплоносителя;

    3) обеспечение достаточности средств для финансирования мероприятий по надежному функционированию и развитию систем теплоснабжения;

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > теплоснабжение

  • 17 теплоснабжение

    1. utilities
    2. space heating
    3. heating
    4. heat supply

     

    теплоснабжение
    Обеспечение потребителей теплом.
    [ ГОСТ 19431-84]

    теплоснабжение
    Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.
    [ ГОСТ Р 54860-2011]

    теплоснабжение
    Совокупность мероприятий по обеспечению систем отопления, вентиляции и горячего водоснабжения теплом с помощью теплоносителя
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Федеральный закон РФ N 190-ФЗ
    от 27 июля 2010 года

    О ТЕПЛОСНАБЖЕНИИ

    (в ред. Федеральных законов от 04.06.2011 N 123-ФЗ, от 18.07.2011 N 242-ФЗ, от 07.12.2011 N 417-ФЗ (ред. 30.12.2012), от 25.06.2012 N 93-ФЗ, от 30.12.2012 N 291-ФЗ, от 30.12.2012 N 318-ФЗ)

    Принят Государственной Думой 9 июля 2010 года

    Одобрен Советом Федерации 14 июля 2010 года

    Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ

    Статья 1. Предмет регулирования настоящего Федерального закона

    1. Настоящий Федеральный закон устанавливает правовые основы экономических отношений, возникающих в связи с производством, передачей, потреблением тепловой энергии, тепловой мощности, теплоносителя с использованием систем теплоснабжения, созданием, функционированием и развитием таких систем, а также определяет полномочия органов государственной власти, органов местного самоуправления поселений, городских округов по регулированию и контролю в сфере теплоснабжения, права и обязанности потребителей тепловой энергии, теплоснабжающих организаций, теплосетевых организаций.

    2. Отношения, связанные с горячим водоснабжением, осуществляемым с использованием открытых систем теплоснабжения (горячего водоснабжения), регулируются настоящим Федеральным законом, за исключением отношений, связанных с обеспечением качества и безопасности горячей воды.

    3. К отношениям, связанным с производством, передачей, потреблением горячей воды при осуществлении горячего водоснабжения с использованием открытых систем теплоснабжения (горячего водоснабжения), применяются положения настоящего Федерального закона, регулирующие производство, передачу, потребление теплоносителя, если иное не предусмотрено настоящим Федеральным законом.

    Статья 2. Основные понятия, используемые в настоящем Федеральном законе

    Для целей настоящего Федерального закона используются следующие основные понятия:

    1) тепловая энергия - энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);

    2) качество теплоснабжения - совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя;

    3) источник тепловой энергии - устройство, предназначенное для производства тепловой энергии;

    4) теплопотребляющая установка - устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;

    4.1) теплоноситель - пар, вода, которые используются для передачи тепловой энергии. Теплоноситель в виде воды в открытых системах теплоснабжения (горячего водоснабжения) может использоваться для теплоснабжения и для горячего водоснабжения;

    5) тепловая сеть - совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;

    6) тепловая мощность (далее - мощность) - количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;

    7) тепловая нагрузка - количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;

    8) теплоснабжение - обеспечение потребителей тепловой энергии тепловой энергией, теплоносителем, в том числе поддержание мощности;

    9) потребитель тепловой энергии (далее также - потребитель) - лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;

    10) инвестиционная программа организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, - программа мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надежности и энергетической эффективности системы теплоснабжения, подключения (технологического присоединения) теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения;

    11) теплоснабжающая организация - организация, осуществляющая продажу потребителям и (или) теплоснабжающим организациям произведенных или приобретенных тепловой энергии (мощности), теплоносителя и владеющая на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в системе теплоснабжения, посредством которой осуществляется теплоснабжение потребителей тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    12) передача тепловой энергии, теплоносителя - совокупность организационно и технологически связанных действий, обеспечивающих поддержание тепловых сетей в состоянии, соответствующем установленным техническими регламентами требованиям, прием, преобразование и доставку тепловой энергии, теплоносителя;

    13) коммерческий учет тепловой энергии, теплоносителя (далее также - коммерческий учет) - установление количества и качества тепловой энергии, теплоносителя, производимых, передаваемых или потребляемых за определенный период, с помощью приборов учета тепловой энергии, теплоносителя (далее - приборы учета) или расчетным путем в целях использования сторонами при расчетах в соответствии с договорами;

    14) система теплоснабжения - совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями;

    15) режим потребления тепловой энергии - процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе техническими регламентами, и условиями договора теплоснабжения;

    16) теплосетевая организация - организация, оказывающая услуги по передаче тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    17) надежность теплоснабжения - характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;

    18) регулируемый вид деятельности в сфере теплоснабжения - вид деятельности в сфере теплоснабжения, при осуществлении которого расчеты за товары, услуги в сфере теплоснабжения осуществляются по ценам (тарифам), подлежащим в соответствии с настоящим Федеральным законом государственному регулированию, а именно:

    а) реализация тепловой энергии (мощности), теплоносителя, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены реализации по соглашению сторон договора;

    б) оказание услуг по передаче тепловой энергии, теплоносителя;

    в) оказание услуг по поддержанию резервной тепловой мощности, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены услуг по соглашению сторон договора;

    19) орган регулирования тарифов в сфере теплоснабжения (далее также - орган регулирования) - уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения (далее - федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения), уполномоченный орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) (далее - орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) либо орган местного самоуправления поселения или городского округа в случае наделения соответствующими полномочиями законом субъекта Российской Федерации, осуществляющие регулирование цен (тарифов) в сфере теплоснабжения;

    19.1) открытая система теплоснабжения (горячего водоснабжения) - технологически связанный комплекс инженерных сооружений, предназначенный для теплоснабжения и горячего водоснабжения путем отбора горячей воды из тепловой сети;

    20) схема теплоснабжения - документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;

    21) резервная тепловая мощность - тепловая мощность источников тепловой энергии и тепловых сетей, необходимая для обеспечения тепловой нагрузки теплопотребляющих установок, входящих в систему теплоснабжения, но не потребляющих тепловой энергии, теплоносителя;

    22) топливно-энергетический баланс - документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию субъекта Российской Федерации или муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;

    23) тарифы в сфере теплоснабжения - система ценовых ставок, по которым осуществляются расчеты за тепловую энергию (мощность), теплоноситель и за услуги по передаче тепловой энергии, теплоносителя;

    24) точка учета тепловой энергии, теплоносителя (далее также - точка учета) - место в системе теплоснабжения, в котором с помощью приборов учета или расчетным путем устанавливаются количество и качество производимых, передаваемых или потребляемых тепловой энергии, теплоносителя для целей коммерческого учета;

    25) комбинированная выработка электрической и тепловой энергии - режим работы теплоэлектростанций, при котором производство электрической энергии непосредственно связано с одновременным производством тепловой энергии;

    26) б азовый режим работы источника тепловой энергии - режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника;

    27) "пиковый" режим работы источника тепловой энергии - режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

    28) единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    29) бездоговорное потребление тепловой энергии - потребление тепловой энергии, теплоносителя без заключения в установленном порядке договора теплоснабжения, либо потребление тепловой энергии, теплоносителя с использованием теплопотребляющих установок, подключенных (технологически присоединенных) к системе теплоснабжения с нарушением установленного порядка подключения (технологического присоединения), либо потребление тепловой энергии, теплоносителя после введения ограничения подачи тепловой энергии в объеме, превышающем допустимый объем потребления, либо потребление тепловой энергии, теплоносителя после предъявления требования теплоснабжающей организации или теплосетевой организации о введении ограничения подачи тепловой энергии или прекращении потребления тепловой энергии, если введение такого ограничения или такое прекращение должно быть осуществлено потребителем;

    30) радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение (технологическое присоединение) теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;

    31) плата за подключение (технологическое присоединение) к системе теплоснабжения - плата, которую вносят лица, осуществляющие строительство здания, строения, сооружения, подключаемых (технологически присоединяемых) к системе теплоснабжения, а также плата, которую вносят лица, осуществляющие реконструкцию здания, строения, сооружения в случае, если данная реконструкция влечет за собой увеличение тепловой нагрузки реконструируемых здания, строения, сооружения (далее также - плата за подключение (технологическое присоединение);

    32) живучесть - способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырех часов) остановок.

    Статья 3. Общие принципы организации отношений и основы государственной политики в сфере теплоснабжения

    1. Общими принципами организации отношений в сфере теплоснабжения являются:

    1) обеспечение надежности теплоснабжения в соответствии с требованиями технических регламентов;

    2) обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных федеральными законами;

    3) обеспечение приоритетного использования комбинированной выработки электрической и тепловой энергии для организации теплоснабжения;

    4) развитие систем централизованного теплоснабжения;

    5) соблюдение баланса экономических интересов теплоснабжающих организаций и интересов потребителей;

    6) обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала;

    7) обеспечение недискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения;

    8) обеспечение экологической безопасности теплоснабжения.

    2. Государственная политика в сфере теплоснабжения направлена на обеспечение соблюдения общих принципов организации отношений в сфере теплоснабжения, установленных настоящей статьей.

    Глава 2. ПОЛНОМОЧИЯ ОРГАНОВ ГОСУДАРСТВЕННОЙ ВЛАСТИ, ОРГАНОВ МЕСТНОГО САМОУПРАВЛЕНИЯ ПОСЕЛЕНИЙ, ГОРОДСКИХ ОКРУГОВ В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 4. Полномочия Правительства Российской Федерации, федеральных органов исполнительной власти в сфере теплоснабжения

    1. К полномочиям Правительства Российской Федерации в сфере теплоснабжения относятся:

    1) разработка государственной политики в сфере теплоснабжения, являющейся частью энергетической стратегии России;

    2) утверждение правил организации теплоснабжения;

    3) утверждение правил подключения (технологического присоединения) к системам теплоснабжения;

    3.1) утверждение правил коммерческого учета тепловой энергии, теплоносителя;

    4) утверждение правил согласования и утверждения инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, а также требований к составу и содержанию таких программ (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике);

    5) утверждение стандартов раскрытия информации теплоснабжающими организациями, теплосетевыми организациями, органами регулирования;

    6) утверждение основ ценообразования в сфере теплоснабжения, правил регулирования цен (тарифов) в сфере теплоснабжения, которые должны включать в себя сроки рассмотрения дел об установлении таких тарифов, исчерпывающий перечень представляемых организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, документов, определение условий и порядка принятия решений об отмене регулирования таких тарифов;

    7) утверждение порядка рассмотрения разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации в области государственного регулирования цен (тарифов), органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, потребителями тепловой энергии при установлении цен (тарифов) в сфере теплоснабжения, при разработке, утверждении и актуализации схем теплоснабжения;

    8) утверждение порядка определения системы мер по обеспечению надежности систем теплоснабжения;

    8.1) утверждение порядка определения целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    9) утверждение порядка вывода в ремонт и из эксплуатации источников тепловой энергии, тепловых сетей;

    10) утратил силу с 1 января 2013 года. - Федеральный закон от 07.12.2011 N 417-ФЗ;

    11) утверждение требований к схемам теплоснабжения, порядку их разработки и утверждения;

    12) утверждение порядка установления долгосрочных параметров регулирования деятельности организаций в отнесенной законодательством Российской Федерации к сферам деятельности субъектов естественных монополий сфере теплоснабжения и (или) цен (тарифов) в сфере теплоснабжения, которые подлежат регулированию в соответствии с перечнем, определенным в статье 8 настоящего Федерального закона;

    13) утверждение порядка заключения долгосрочных договоров теплоснабжения по ценам, определенным соглашением сторон, в целях обеспечения потребления тепловой энергии (мощности), теплоносителя объектами, потребляющими тепловую энергию (мощность), теплоноситель и введенными в эксплуатацию после 1 января 2010 года;

    14) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил определения стоимости активов и инвестированного капитала, правил ведения их раздельного учета, применяемых при осуществлении деятельности, регулируемой с использованием метода доходности инвестированного капитала;

    15) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил распределения удельного расхода топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии;

    15.1) установление порядка расчета размера возмещения организациям, осуществляющим регулируемые виды деятельности в сфере теплоснабжения, недополученных доходов от регулируемых видов деятельности в сфере теплоснабжения за счет средств бюджетов бюджетной системы Российской Федерации в связи с принятием уполномоченными органами решений об изменении установленных долгосрочных тарифов в сфере теплоснабжения, и (или) необходимой валовой выручки теплоснабжающих организаций, теплосетевых организаций, определенной в соответствии с основами ценообразования в сфере теплоснабжения на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, и (или) долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, а также решений об установлении долгосрочных тарифов на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, отличных от долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, установленных органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов или в пределах переданных полномочий органом местного самоуправления поселения или городского округа либо согласованных ими в соответствии с законодательством Российской Федерации о концессионных соглашениях, в установленных настоящим Федеральным законом случаях возмещения недополученных доходов;

    16) иные полномочия, установленные настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям федерального органа исполнительной власти, уполномоченного на реализацию государственной политики в сфере теплоснабжения, относятся:

    1) утратил силу с 1 апреля 2014 года. - Федеральный закон от 30.12.2012 N 291-ФЗ;

    2) утверждение правил оценки готовности к отопительному периоду;

    3) установление порядка расследования причин аварийных ситуаций при теплоснабжении;

    4) установление порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, нормативов удельного расхода топлива при производстве тепловой энергии, нормативов запасов топлива на источниках тепловой энергии (за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе в целях государственного регулирования цен (тарифов) в сфере теплоснабжения;

    5) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более, а также нормативов запасов топлива на источниках тепловой энергии при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    6) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, расположенным в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, а также в городах федерального значения Москве и Санкт-Петербурге;

    7) ведение государственного реестра саморегулируемых организаций в сфере теплоснабжения;

    8) осуществление государственного контроля и надзора за деятельностью саморегулируемых организаций в сфере теплоснабжения;

    9) обращение в суд с требованием об исключении некоммерческой организации из государственного реестра саморегулируемых организаций в случаях, предусмотренных настоящим Федеральным законом;

    10) утверждение порядка составления топливно-энергетических балансов субъектов Российской Федерации, муниципальных образований;

    11) утверждение схем теплоснабжения поселений, городских округов с численностью населения пятьсот тысяч человек и более, а также городов федерального значения Москвы и Санкт-Петербурга, в том числе определение единой теплоснабжающей организации;

    12) рассмотрение разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации, органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, и потребителями при разработке, утверждении и актуализации схем теплоснабжения;

    13) утверждение порядка осуществления мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    14) утверждение методики комплексного определения показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения, и порядка осуществления мониторинга таких показателей;

    15) утверждение порядка осуществления контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике).

    3. Федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения реализует предусмотренные частью 2 статьи 7 настоящего Федерального закона полномочия в области государственного регулирования цен (тарифов) в сфере теплоснабжения.

    4. К полномочиям федерального антимонопольного органа относятся:

    1) антимонопольное регулирование и контроль в сфере теплоснабжения;

    2) согласование решений органов исполнительной власти субъектов Российской Федерации об отмене регулирования тарифов в сфере теплоснабжения и о введении регулирования тарифов в сфере теплоснабжения после их отмены, выдача предписаний об отмене регулирования тарифов в сфере теплоснабжения.

    5. Федеральные органы исполнительной власти, указанные в частях 2 - 4 настоящей статьи, осуществляют контроль (надзор) за соблюдением органами исполнительной власти субъектов Российской Федерации и органами местного самоуправления поселений, городских округов требований законодательства Российской Федерации в сфере теплоснабжения.

    6. Правительство Российской Федерации или уполномоченный федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения устанавливает (в случаях и в порядке, которые определены основами ценообразования в сфере теплоснабжения) предельные (минимальные и (или) максимальные) индексы роста цен (тарифов), учитываемые при переходе к государственному регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы применяются в отношении цен (тарифов), рассчитываемых на каждый год долгосрочного периода регулирования в порядке, установленном основами ценообразования в сфере теплоснабжения, при переходе к регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы на второй долгосрочный период регулирования и последующие долгосрочные периоды регулирования определяются с учетом обеспечения возврата и доходности капитала, инвестированного в течение предыдущего долгосрочного периода регулирования или предыдущих долгосрочных периодов регулирования в соответствии с принятыми органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов либо в пределах переданных полномочий органом местного самоуправления поселения или городского округа решениями об установлении тарифов или долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения.

    Статья 5. Полномочия органов государственной власти субъектов Российской Федерации в сфере теплоснабжения

    1. Органы государственной власти субъектов Российской Федерации осуществляют полномочия по государственному регулированию и контролю в сфере теплоснабжения в соответствии с настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям органов исполнительной власти субъектов Российской Федерации в сфере теплоснабжения относятся:

    1) реализация предусмотренных частью 3 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    2) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, за исключением тепловых сетей, расположенных в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, в городах федерального значения Москве и Санкт-Петербурге;

    3) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    4) утверждение нормативов запасов топлива на источниках тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    5) утверждение инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, с применением установленных органами исполнительной власти субъекта Российской Федерации целевых показателей надежности и качества поставляемых товаров и оказываемых услуг такими организациями, по согласованию с органами местного самоуправления поселений, городских округов;

    6) определение системы мер по обеспечению надежности систем теплоснабжения поселений, городских округов в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    7) составление топливно-энергетического баланса субъекта Российской Федерации;

    7.1) осуществление мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    7.2) осуществление мониторинга показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения;

    7.3) осуществление контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, которые утверждаются в соответствии с законодательством Российской Федерации об электроэнергетике), в том числе за достижением этими организациями целевых показателей надежности и качества поставляемых товаров и оказываемых услуг в результате реализации мероприятий таких программ;

    7.4) определение целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    8) иные полномочия, предусмотренные другими федеральными законами.

    Статья 6. Полномочия органов местного самоуправления поселений, городских округов в сфере теплоснабжения

    1. К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относятся:

    1) организация обеспечения надежного теплоснабжения потребителей на территориях поселений, городских округов, в том числе принятие мер по организации обеспечения теплоснабжения потребителей в случае неисполнения теплоснабжающими организациями или теплосетевыми организациями своих обязательств либо отказа указанных организаций от исполнения своих обязательств;

    2) рассмотрение обращений потребителей по вопросам надежности теплоснабжения в порядке, установленном правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    3) реализация предусмотренных частями 5 - 7 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    4) выполнение требований, установленных правилами оценки готовности поселений, городских округов к отопительному периоду, и контроль за готовностью теплоснабжающих организаций, теплосетевых организаций, отдельных категорий потребителей к отопительному периоду;

    5) согласование вывода источников тепловой энергии, тепловых сетей в ремонт и из эксплуатации;

    6) утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации;

    7) согласование инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, за исключением таких программ, которые согласовываются в соответствии с законодательством Российской Федерации об электроэнергетике.

    2. Полномочия органов местного самоуправления городов федерального значения Москвы и Санкт-Петербурга по организации теплоснабжения на внутригородских территориях определяются законами указанных субъектов Российской Федерации исходя из необходимости сохранения единства городских хозяйств с учетом положений настоящего Федерального закона.

    Глава 3. ГОСУДАРСТВЕННАЯ ПОЛИТИКА ПРИ УСТАНОВЛЕНИИ РЕГУЛИРУЕМЫХ ЦЕН (ТАРИФОВ) В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 7. Принципы регулирования цен (тарифов) в сфере теплоснабжения и полномочия органов исполнительной власти, органов местного самоуправления поселений, городских округов в области регулирования цен (тарифов) в сфере теплоснабжения

    1. Регулирование цен (тарифов) в сфере теплоснабжения осуществляется в соответствии со следующими основными принципами:

    1) обеспечение доступности тепловой энергии (мощности), теплоносителя для потребителей;

    2) обеспечение экономической обоснованности расходов теплоснабжающих организаций, теплосетевых организаций на производство, передачу и сбыт тепловой энергии (мощности), теплоносителя;

    3) обеспечение достаточности средств для финансирования мероприятий по надежному функционированию и развитию систем теплоснабжения;

    Тематики

    EN

    DE

    FR

    3.1.42 теплоснабжение (space heating): Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.

    Источник: ГОСТ Р 54860-2011: Теплоснабжение зданий. Общие положения методики расчета энергопотребности и эффективности систем теплоснабжения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > теплоснабжение

  • 18 теплоснабжение

    1. distribution de chaleur

     

    теплоснабжение
    Обеспечение потребителей теплом.
    [ ГОСТ 19431-84]

    теплоснабжение
    Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.
    [ ГОСТ Р 54860-2011]

    теплоснабжение
    Совокупность мероприятий по обеспечению систем отопления, вентиляции и горячего водоснабжения теплом с помощью теплоносителя
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Федеральный закон РФ N 190-ФЗ
    от 27 июля 2010 года

    О ТЕПЛОСНАБЖЕНИИ

    (в ред. Федеральных законов от 04.06.2011 N 123-ФЗ, от 18.07.2011 N 242-ФЗ, от 07.12.2011 N 417-ФЗ (ред. 30.12.2012), от 25.06.2012 N 93-ФЗ, от 30.12.2012 N 291-ФЗ, от 30.12.2012 N 318-ФЗ)

    Принят Государственной Думой 9 июля 2010 года

    Одобрен Советом Федерации 14 июля 2010 года

    Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ

    Статья 1. Предмет регулирования настоящего Федерального закона

    1. Настоящий Федеральный закон устанавливает правовые основы экономических отношений, возникающих в связи с производством, передачей, потреблением тепловой энергии, тепловой мощности, теплоносителя с использованием систем теплоснабжения, созданием, функционированием и развитием таких систем, а также определяет полномочия органов государственной власти, органов местного самоуправления поселений, городских округов по регулированию и контролю в сфере теплоснабжения, права и обязанности потребителей тепловой энергии, теплоснабжающих организаций, теплосетевых организаций.

    2. Отношения, связанные с горячим водоснабжением, осуществляемым с использованием открытых систем теплоснабжения (горячего водоснабжения), регулируются настоящим Федеральным законом, за исключением отношений, связанных с обеспечением качества и безопасности горячей воды.

    3. К отношениям, связанным с производством, передачей, потреблением горячей воды при осуществлении горячего водоснабжения с использованием открытых систем теплоснабжения (горячего водоснабжения), применяются положения настоящего Федерального закона, регулирующие производство, передачу, потребление теплоносителя, если иное не предусмотрено настоящим Федеральным законом.

    Статья 2. Основные понятия, используемые в настоящем Федеральном законе

    Для целей настоящего Федерального закона используются следующие основные понятия:

    1) тепловая энергия - энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);

    2) качество теплоснабжения - совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя;

    3) источник тепловой энергии - устройство, предназначенное для производства тепловой энергии;

    4) теплопотребляющая установка - устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;

    4.1) теплоноситель - пар, вода, которые используются для передачи тепловой энергии. Теплоноситель в виде воды в открытых системах теплоснабжения (горячего водоснабжения) может использоваться для теплоснабжения и для горячего водоснабжения;

    5) тепловая сеть - совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;

    6) тепловая мощность (далее - мощность) - количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;

    7) тепловая нагрузка - количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;

    8) теплоснабжение - обеспечение потребителей тепловой энергии тепловой энергией, теплоносителем, в том числе поддержание мощности;

    9) потребитель тепловой энергии (далее также - потребитель) - лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;

    10) инвестиционная программа организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, - программа мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надежности и энергетической эффективности системы теплоснабжения, подключения (технологического присоединения) теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения;

    11) теплоснабжающая организация - организация, осуществляющая продажу потребителям и (или) теплоснабжающим организациям произведенных или приобретенных тепловой энергии (мощности), теплоносителя и владеющая на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в системе теплоснабжения, посредством которой осуществляется теплоснабжение потребителей тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    12) передача тепловой энергии, теплоносителя - совокупность организационно и технологически связанных действий, обеспечивающих поддержание тепловых сетей в состоянии, соответствующем установленным техническими регламентами требованиям, прием, преобразование и доставку тепловой энергии, теплоносителя;

    13) коммерческий учет тепловой энергии, теплоносителя (далее также - коммерческий учет) - установление количества и качества тепловой энергии, теплоносителя, производимых, передаваемых или потребляемых за определенный период, с помощью приборов учета тепловой энергии, теплоносителя (далее - приборы учета) или расчетным путем в целях использования сторонами при расчетах в соответствии с договорами;

    14) система теплоснабжения - совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями;

    15) режим потребления тепловой энергии - процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе техническими регламентами, и условиями договора теплоснабжения;

    16) теплосетевая организация - организация, оказывающая услуги по передаче тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    17) надежность теплоснабжения - характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;

    18) регулируемый вид деятельности в сфере теплоснабжения - вид деятельности в сфере теплоснабжения, при осуществлении которого расчеты за товары, услуги в сфере теплоснабжения осуществляются по ценам (тарифам), подлежащим в соответствии с настоящим Федеральным законом государственному регулированию, а именно:

    а) реализация тепловой энергии (мощности), теплоносителя, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены реализации по соглашению сторон договора;

    б) оказание услуг по передаче тепловой энергии, теплоносителя;

    в) оказание услуг по поддержанию резервной тепловой мощности, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены услуг по соглашению сторон договора;

    19) орган регулирования тарифов в сфере теплоснабжения (далее также - орган регулирования) - уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения (далее - федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения), уполномоченный орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) (далее - орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) либо орган местного самоуправления поселения или городского округа в случае наделения соответствующими полномочиями законом субъекта Российской Федерации, осуществляющие регулирование цен (тарифов) в сфере теплоснабжения;

    19.1) открытая система теплоснабжения (горячего водоснабжения) - технологически связанный комплекс инженерных сооружений, предназначенный для теплоснабжения и горячего водоснабжения путем отбора горячей воды из тепловой сети;

    20) схема теплоснабжения - документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;

    21) резервная тепловая мощность - тепловая мощность источников тепловой энергии и тепловых сетей, необходимая для обеспечения тепловой нагрузки теплопотребляющих установок, входящих в систему теплоснабжения, но не потребляющих тепловой энергии, теплоносителя;

    22) топливно-энергетический баланс - документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию субъекта Российской Федерации или муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;

    23) тарифы в сфере теплоснабжения - система ценовых ставок, по которым осуществляются расчеты за тепловую энергию (мощность), теплоноситель и за услуги по передаче тепловой энергии, теплоносителя;

    24) точка учета тепловой энергии, теплоносителя (далее также - точка учета) - место в системе теплоснабжения, в котором с помощью приборов учета или расчетным путем устанавливаются количество и качество производимых, передаваемых или потребляемых тепловой энергии, теплоносителя для целей коммерческого учета;

    25) комбинированная выработка электрической и тепловой энергии - режим работы теплоэлектростанций, при котором производство электрической энергии непосредственно связано с одновременным производством тепловой энергии;

    26) б азовый режим работы источника тепловой энергии - режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника;

    27) "пиковый" режим работы источника тепловой энергии - режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

    28) единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    29) бездоговорное потребление тепловой энергии - потребление тепловой энергии, теплоносителя без заключения в установленном порядке договора теплоснабжения, либо потребление тепловой энергии, теплоносителя с использованием теплопотребляющих установок, подключенных (технологически присоединенных) к системе теплоснабжения с нарушением установленного порядка подключения (технологического присоединения), либо потребление тепловой энергии, теплоносителя после введения ограничения подачи тепловой энергии в объеме, превышающем допустимый объем потребления, либо потребление тепловой энергии, теплоносителя после предъявления требования теплоснабжающей организации или теплосетевой организации о введении ограничения подачи тепловой энергии или прекращении потребления тепловой энергии, если введение такого ограничения или такое прекращение должно быть осуществлено потребителем;

    30) радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение (технологическое присоединение) теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;

    31) плата за подключение (технологическое присоединение) к системе теплоснабжения - плата, которую вносят лица, осуществляющие строительство здания, строения, сооружения, подключаемых (технологически присоединяемых) к системе теплоснабжения, а также плата, которую вносят лица, осуществляющие реконструкцию здания, строения, сооружения в случае, если данная реконструкция влечет за собой увеличение тепловой нагрузки реконструируемых здания, строения, сооружения (далее также - плата за подключение (технологическое присоединение);

    32) живучесть - способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырех часов) остановок.

    Статья 3. Общие принципы организации отношений и основы государственной политики в сфере теплоснабжения

    1. Общими принципами организации отношений в сфере теплоснабжения являются:

    1) обеспечение надежности теплоснабжения в соответствии с требованиями технических регламентов;

    2) обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных федеральными законами;

    3) обеспечение приоритетного использования комбинированной выработки электрической и тепловой энергии для организации теплоснабжения;

    4) развитие систем централизованного теплоснабжения;

    5) соблюдение баланса экономических интересов теплоснабжающих организаций и интересов потребителей;

    6) обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала;

    7) обеспечение недискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения;

    8) обеспечение экологической безопасности теплоснабжения.

    2. Государственная политика в сфере теплоснабжения направлена на обеспечение соблюдения общих принципов организации отношений в сфере теплоснабжения, установленных настоящей статьей.

    Глава 2. ПОЛНОМОЧИЯ ОРГАНОВ ГОСУДАРСТВЕННОЙ ВЛАСТИ, ОРГАНОВ МЕСТНОГО САМОУПРАВЛЕНИЯ ПОСЕЛЕНИЙ, ГОРОДСКИХ ОКРУГОВ В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 4. Полномочия Правительства Российской Федерации, федеральных органов исполнительной власти в сфере теплоснабжения

    1. К полномочиям Правительства Российской Федерации в сфере теплоснабжения относятся:

    1) разработка государственной политики в сфере теплоснабжения, являющейся частью энергетической стратегии России;

    2) утверждение правил организации теплоснабжения;

    3) утверждение правил подключения (технологического присоединения) к системам теплоснабжения;

    3.1) утверждение правил коммерческого учета тепловой энергии, теплоносителя;

    4) утверждение правил согласования и утверждения инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, а также требований к составу и содержанию таких программ (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике);

    5) утверждение стандартов раскрытия информации теплоснабжающими организациями, теплосетевыми организациями, органами регулирования;

    6) утверждение основ ценообразования в сфере теплоснабжения, правил регулирования цен (тарифов) в сфере теплоснабжения, которые должны включать в себя сроки рассмотрения дел об установлении таких тарифов, исчерпывающий перечень представляемых организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, документов, определение условий и порядка принятия решений об отмене регулирования таких тарифов;

    7) утверждение порядка рассмотрения разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации в области государственного регулирования цен (тарифов), органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, потребителями тепловой энергии при установлении цен (тарифов) в сфере теплоснабжения, при разработке, утверждении и актуализации схем теплоснабжения;

    8) утверждение порядка определения системы мер по обеспечению надежности систем теплоснабжения;

    8.1) утверждение порядка определения целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    9) утверждение порядка вывода в ремонт и из эксплуатации источников тепловой энергии, тепловых сетей;

    10) утратил силу с 1 января 2013 года. - Федеральный закон от 07.12.2011 N 417-ФЗ;

    11) утверждение требований к схемам теплоснабжения, порядку их разработки и утверждения;

    12) утверждение порядка установления долгосрочных параметров регулирования деятельности организаций в отнесенной законодательством Российской Федерации к сферам деятельности субъектов естественных монополий сфере теплоснабжения и (или) цен (тарифов) в сфере теплоснабжения, которые подлежат регулированию в соответствии с перечнем, определенным в статье 8 настоящего Федерального закона;

    13) утверждение порядка заключения долгосрочных договоров теплоснабжения по ценам, определенным соглашением сторон, в целях обеспечения потребления тепловой энергии (мощности), теплоносителя объектами, потребляющими тепловую энергию (мощность), теплоноситель и введенными в эксплуатацию после 1 января 2010 года;

    14) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил определения стоимости активов и инвестированного капитала, правил ведения их раздельного учета, применяемых при осуществлении деятельности, регулируемой с использованием метода доходности инвестированного капитала;

    15) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил распределения удельного расхода топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии;

    15.1) установление порядка расчета размера возмещения организациям, осуществляющим регулируемые виды деятельности в сфере теплоснабжения, недополученных доходов от регулируемых видов деятельности в сфере теплоснабжения за счет средств бюджетов бюджетной системы Российской Федерации в связи с принятием уполномоченными органами решений об изменении установленных долгосрочных тарифов в сфере теплоснабжения, и (или) необходимой валовой выручки теплоснабжающих организаций, теплосетевых организаций, определенной в соответствии с основами ценообразования в сфере теплоснабжения на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, и (или) долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, а также решений об установлении долгосрочных тарифов на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, отличных от долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, установленных органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов или в пределах переданных полномочий органом местного самоуправления поселения или городского округа либо согласованных ими в соответствии с законодательством Российской Федерации о концессионных соглашениях, в установленных настоящим Федеральным законом случаях возмещения недополученных доходов;

    16) иные полномочия, установленные настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям федерального органа исполнительной власти, уполномоченного на реализацию государственной политики в сфере теплоснабжения, относятся:

    1) утратил силу с 1 апреля 2014 года. - Федеральный закон от 30.12.2012 N 291-ФЗ;

    2) утверждение правил оценки готовности к отопительному периоду;

    3) установление порядка расследования причин аварийных ситуаций при теплоснабжении;

    4) установление порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, нормативов удельного расхода топлива при производстве тепловой энергии, нормативов запасов топлива на источниках тепловой энергии (за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе в целях государственного регулирования цен (тарифов) в сфере теплоснабжения;

    5) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более, а также нормативов запасов топлива на источниках тепловой энергии при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    6) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, расположенным в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, а также в городах федерального значения Москве и Санкт-Петербурге;

    7) ведение государственного реестра саморегулируемых организаций в сфере теплоснабжения;

    8) осуществление государственного контроля и надзора за деятельностью саморегулируемых организаций в сфере теплоснабжения;

    9) обращение в суд с требованием об исключении некоммерческой организации из государственного реестра саморегулируемых организаций в случаях, предусмотренных настоящим Федеральным законом;

    10) утверждение порядка составления топливно-энергетических балансов субъектов Российской Федерации, муниципальных образований;

    11) утверждение схем теплоснабжения поселений, городских округов с численностью населения пятьсот тысяч человек и более, а также городов федерального значения Москвы и Санкт-Петербурга, в том числе определение единой теплоснабжающей организации;

    12) рассмотрение разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации, органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, и потребителями при разработке, утверждении и актуализации схем теплоснабжения;

    13) утверждение порядка осуществления мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    14) утверждение методики комплексного определения показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения, и порядка осуществления мониторинга таких показателей;

    15) утверждение порядка осуществления контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике).

    3. Федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения реализует предусмотренные частью 2 статьи 7 настоящего Федерального закона полномочия в области государственного регулирования цен (тарифов) в сфере теплоснабжения.

    4. К полномочиям федерального антимонопольного органа относятся:

    1) антимонопольное регулирование и контроль в сфере теплоснабжения;

    2) согласование решений органов исполнительной власти субъектов Российской Федерации об отмене регулирования тарифов в сфере теплоснабжения и о введении регулирования тарифов в сфере теплоснабжения после их отмены, выдача предписаний об отмене регулирования тарифов в сфере теплоснабжения.

    5. Федеральные органы исполнительной власти, указанные в частях 2 - 4 настоящей статьи, осуществляют контроль (надзор) за соблюдением органами исполнительной власти субъектов Российской Федерации и органами местного самоуправления поселений, городских округов требований законодательства Российской Федерации в сфере теплоснабжения.

    6. Правительство Российской Федерации или уполномоченный федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения устанавливает (в случаях и в порядке, которые определены основами ценообразования в сфере теплоснабжения) предельные (минимальные и (или) максимальные) индексы роста цен (тарифов), учитываемые при переходе к государственному регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы применяются в отношении цен (тарифов), рассчитываемых на каждый год долгосрочного периода регулирования в порядке, установленном основами ценообразования в сфере теплоснабжения, при переходе к регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы на второй долгосрочный период регулирования и последующие долгосрочные периоды регулирования определяются с учетом обеспечения возврата и доходности капитала, инвестированного в течение предыдущего долгосрочного периода регулирования или предыдущих долгосрочных периодов регулирования в соответствии с принятыми органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов либо в пределах переданных полномочий органом местного самоуправления поселения или городского округа решениями об установлении тарифов или долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения.

    Статья 5. Полномочия органов государственной власти субъектов Российской Федерации в сфере теплоснабжения

    1. Органы государственной власти субъектов Российской Федерации осуществляют полномочия по государственному регулированию и контролю в сфере теплоснабжения в соответствии с настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям органов исполнительной власти субъектов Российской Федерации в сфере теплоснабжения относятся:

    1) реализация предусмотренных частью 3 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    2) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, за исключением тепловых сетей, расположенных в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, в городах федерального значения Москве и Санкт-Петербурге;

    3) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    4) утверждение нормативов запасов топлива на источниках тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    5) утверждение инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, с применением установленных органами исполнительной власти субъекта Российской Федерации целевых показателей надежности и качества поставляемых товаров и оказываемых услуг такими организациями, по согласованию с органами местного самоуправления поселений, городских округов;

    6) определение системы мер по обеспечению надежности систем теплоснабжения поселений, городских округов в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    7) составление топливно-энергетического баланса субъекта Российской Федерации;

    7.1) осуществление мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    7.2) осуществление мониторинга показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения;

    7.3) осуществление контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, которые утверждаются в соответствии с законодательством Российской Федерации об электроэнергетике), в том числе за достижением этими организациями целевых показателей надежности и качества поставляемых товаров и оказываемых услуг в результате реализации мероприятий таких программ;

    7.4) определение целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    8) иные полномочия, предусмотренные другими федеральными законами.

    Статья 6. Полномочия органов местного самоуправления поселений, городских округов в сфере теплоснабжения

    1. К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относятся:

    1) организация обеспечения надежного теплоснабжения потребителей на территориях поселений, городских округов, в том числе принятие мер по организации обеспечения теплоснабжения потребителей в случае неисполнения теплоснабжающими организациями или теплосетевыми организациями своих обязательств либо отказа указанных организаций от исполнения своих обязательств;

    2) рассмотрение обращений потребителей по вопросам надежности теплоснабжения в порядке, установленном правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    3) реализация предусмотренных частями 5 - 7 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    4) выполнение требований, установленных правилами оценки готовности поселений, городских округов к отопительному периоду, и контроль за готовностью теплоснабжающих организаций, теплосетевых организаций, отдельных категорий потребителей к отопительному периоду;

    5) согласование вывода источников тепловой энергии, тепловых сетей в ремонт и из эксплуатации;

    6) утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации;

    7) согласование инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, за исключением таких программ, которые согласовываются в соответствии с законодательством Российской Федерации об электроэнергетике.

    2. Полномочия органов местного самоуправления городов федерального значения Москвы и Санкт-Петербурга по организации теплоснабжения на внутригородских территориях определяются законами указанных субъектов Российской Федерации исходя из необходимости сохранения единства городских хозяйств с учетом положений настоящего Федерального закона.

    Глава 3. ГОСУДАРСТВЕННАЯ ПОЛИТИКА ПРИ УСТАНОВЛЕНИИ РЕГУЛИРУЕМЫХ ЦЕН (ТАРИФОВ) В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 7. Принципы регулирования цен (тарифов) в сфере теплоснабжения и полномочия органов исполнительной власти, органов местного самоуправления поселений, городских округов в области регулирования цен (тарифов) в сфере теплоснабжения

    1. Регулирование цен (тарифов) в сфере теплоснабжения осуществляется в соответствии со следующими основными принципами:

    1) обеспечение доступности тепловой энергии (мощности), теплоносителя для потребителей;

    2) обеспечение экономической обоснованности расходов теплоснабжающих организаций, теплосетевых организаций на производство, передачу и сбыт тепловой энергии (мощности), теплоносителя;

    3) обеспечение достаточности средств для финансирования мероприятий по надежному функционированию и развитию систем теплоснабжения;

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > теплоснабжение

  • 19 масло

    масло сущ
    oil
    барботаж масла
    oil splashing
    (в двигателе) заливная трубка масла
    oil level tube
    запас масла для флюгирования
    feathering oil reserve
    контрольное окно уровня масла
    oil level hole
    масло линии нагнетания
    feed oil
    насос подачи масла
    oil-feed pump
    остаток масла
    remaining oil
    система откачки масла
    oil scavenge system
    система разжижения масла
    oil dilution system
    сорт масла
    oil grade
    температура входящего масла
    oil-in temperature
    температура выходящего масла
    oil-out temperature
    термометр масла
    oil temperature gage
    техническое масло
    industrial oil
    указатель температуры масла
    oil temperature indicator

    Русско-английский авиационный словарь > масло

  • 20 человеко-машинный интерфейс

    1. operator-machine communication
    2. MMI
    3. man-machine interface
    4. man-machine communication
    5. human-machine interface
    6. human-computer interface
    7. human interface device
    8. human interface
    9. HMI
    10. computer human interface
    11. CHI

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > человеко-машинный интерфейс

См. также в других словарях:

  • температура подачи —      Температура оказывает большое влияние на вкус вина. Неправильно сильно охлаждать все вина перед подачей на стол. Красные столовые и крепкие вина лучше проявляют свои достоинства при 16 18°С. Тонкие белые сухие вина следует охладить до 10 12° …   Кулинарный словарь

  • Суп — У этого термина существуют и другие значения, см. Суп (значения). Суп Суп (фр. soupe) жидкое блюдо (обычно первое), распространённое во многи …   Википедия

  • Кава (игристое вино) — У этого термина существуют и другие значения, см. Кава. Cava Codorniu Pinot Noir Кава (кат. Cava)  произведённое в Испании игристое вино. Производится преимущественно в Каталонии. В 1872 году каталонец Дон Хосе Равентос, семейная фирма… …   Википедия

  • активная охлаждающая балка — [Интент] На рисунке показана активная охлаждающая балка. Охлажденный и осушенный первичный воздух (1) подается по воздуховодам от центральной приточной установки в распределительную камеру внутри балки, из которой он инжектируется (2) через набор …   Справочник технического переводчика

  • Коньяк — У этого термина существуют и другие значения, см. Коньяк (значения). Коньяк Камю Джубили (0,7 л, 40% крепость, возраст 35 лет) Коньяк ( …   Википедия

  • Famous Grouse — Виски Основатель: Мэтью Глоэг …   Википедия

  • Холодный суп — Холодник …   Википедия

  • система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… …   Словарь-справочник терминов нормативно-технической документации

  • время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Бензин — (Petrol) Бензин это самое распространенное топливо для большинства видов транспорта Подробная информация о составе, получении, хранении и применении бензина Содержание >>>>>>>>>>>>>> …   Энциклопедия инвестора

  • 1: — Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»